IUKL Library
G�unther, Harald.

NMR Spectroscopy : Basic Principles, Concepts and Applications in Chemistry. - 1 online resource (736 pages) - New York Academy of Sciences Ser. . - New York Academy of Sciences Ser. .

NMR Spectroscopy -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Literature -- 1.2 Units and Constants -- References -- Part I Basic Principles and Applications -- Chapter 2 The Physical Basis of the Nuclear Magnetic Resonance Experiment. Part I -- 2.1 The Quantum Mechanical Model for the Isolated Proton -- 2.2 Classical Description of the NMR Experiment -- 2.3 Experimental Verification of Quantized Angular Momentum and of the Resonance Equation -- 2.4 The NMR Experiment on Compact Matter and the Principle of the NMR Spectrometer -- 2.4.1 How to Measure an NMR Spectrum -- 2.5 Magnetic Properties of Nuclei beyond the Proton -- References -- Chapter 3 The Proton Magnetic Resonance Spectra of Organic Molecules - Chemical Shift and Spin-Spin Coupling -- 3.1 The Chemical Shift -- 3.1.1 Chemical Shift Measurements -- 3.1.2 Integration of the Spectrum -- 3.1.3 Structural Dependence of the Resonance Frequency - A General Survey -- 3.2 Spin-Spin Coupling -- 3.2.1 Simple Rules for the Interpretation of Multiplet Structures -- 3.2.2 Spin-Spin Coupling with Other Nuclei -- 3.2.2.1 Nuclei of Spin I=12 -- 3.2.2.2 Nuclei of Spin I> -- 12 -- 3.2.3 Limits of the Simple Splitting Rules -- 3.2.3.1 The Notion of Magnetic Equivalence -- 3.2.3.2 Significance of the Ratio J/(Sp(B0(Se(B -- 3.2.4 Spin-Spin Decoupling -- 3.2.5 Two-Dimensional NMR - the COSY Experiment -- 3.2.6 Structural Dependence of Spin-Spin Coupling - A General Survey -- References -- Chapter 4 General Experimental Aspects of Nuclear Magnetic Resonance Spectroscopy -- 4.1 Sample Preparation and Sample Tubes -- 4.2 Internal and External Standards -- Solvent Effects -- 4.3 Tuning the Spectrometer -- 4.4 Increasing the Sensitivity -- 4.5 Measurement of Spectra at Different Temperatures -- References -- Textbooks -- Review Articles. Chapter 5 Proton Chemical Shifts and Spin-Spin Coupling Constants as Functions of Structure -- 5.1 Origin of Proton Chemical Shifts -- 5.1.1 Influence of the Electron Density at the Proton -- 5.1.2 Influence of the Electron Density at Neighboring Carbon Atoms -- 5.1.3 The Influence of Induced Magnetic Moments of Neighboring Atoms and Bonds -- 5.1.4 Ring Current Effect in Cyclic Conjugated (Ss(B-Systems -- 5.1.5 Alternative Methods to Measure Diatropicity -- 5.1.6 Diamagnetic Anisotropy of the Cyclopropane Ring -- 5.1.7 Electric Field Effect of Polar Groups and the van-der-Waals Effect -- 5.1.8 Chemical Shifts through Hydrogen Bonding -- 5.1.9 Chemical Shifts of Protons in Organometallic Compounds -- 5.1.10 Solvent Effects -- 5.1.11 Empirical Substituent Constants -- 5.1.11.1 Tables of Proton Resonances in Organic Molecules -- 5.2 Proton-Proton Spin-Spin Coupling and Chemical Structure -- 5.2.1 The Geminal Coupling Constant (2J) -- 5.2.1.1 Dependence on the Hybridization of the Methylene Carbon -- 5.2.1.2 Effect of Substituents -- 5.2.1.3 A Molecular Orbital Model for the Interpretation of Substituent Effects on 2J -- 5.2.2 The Vicinal Coupling Constant (3J) -- 5.2.2.1 Dependence on the Dihedral Angle -- 5.2.2.2 Dependence upon the C-C Bond Length, R(Sop(B -- 5.2.2.3 Dependence on HCC Valence Angles -- 5.2.2.4 Substituent Effects -- 5.2.3 Long-Range Coupling Constants (4J, 5J) -- 5.2.3.1 Saturated Systems -- 5.2.3.2 Unsaturated Systems -- 5.2.4 Through-Space and Dipolar Coupling -- 5.2.5 Tables of Spin-Spin Coupling Constants in Organic Molecules -- References -- Monograph -- Review Articles -- Chapter 6 The Analysis of High-Resolution Nuclear Magnetic Resonance Spectra -- 6.1 Notation for Spin Systems -- 6.2 Quantum Mechanical Formalism -- 6.2.1 The Schr"odinger Equation -- 6.3 The Hamilton Operator for High-Resolution Nuclear Magnetic Resonance Spectroscopy. 6.4 Calculation of Individual Spin Systems -- 6.4.1 Stationary States of a Single Nucleus A -- 6.4.2 Two Nuclei without Spin-Spin Interaction (Jij = 0) -- Selection Rules -- 6.4.3 Two Nuclei with Spin-Spin Interaction (Jij = 0) -- 6.4.3.1 The A2 Case and the Variational Method -- 6.4.3.2 Calculation of the Relative Intensities -- 6.4.3.3 Symmetric and Antisymmetric Wave Functions -- 6.4.4 The AB System -- 6.4.5 The AX System and the First-Order Approximation -- 6.4.6 General Rules for the Treatment of More Complex Spin Systems -- 6.5 Calculation of the Parameters (Sp(Bi and Jij from the Experimental Spectrum -- 6.5.1 Direct Analysis of the AB System -- 6.5.2 Spin Systems with Three Nuclei -- 6.5.2.1 The AB2 (A2B) System -- 6.5.2.2 The Particle Spin -- 6.5.2.3 The ABX System -- 6.5.3 Spin Systems with Four Nuclei - The AA'XX' System -- 6.5.4 Computer Analysis -- References -- Textbooks -- Review Articles -- Chapter 7 The Influence of Molecular Symmetry and Chirality on Proton Magnetic Resonance Spectra -- 7.1 Spectral Types and Structural Isomerism -- 7.2 Influence of Chirality on the NMR Spectrum -- 7.3 Analysis of Degenerate Spin Systems by Means of 13C Satellites and H/D Substitution -- References -- Review Articles -- Part II Advanced Methods and Applications -- Chapter 8 The Physical Basis of the Nuclear Magnetic Resonance Experiment. Part II: Pulse and Fourier-Transform NMR -- 8.1 The NMR Signal by Pulse Excitation -- 8.1.1 Resonance for the Isolated Nucleus -- 8.1.2 Pulse Excitation for a Macroscopic Sample -- 8.2 Relaxation Effects -- 8.2.1 Longitudinal or Spin-Lattice Relaxation -- 8.2.2 Transverse or Spin-Spin Relaxation -- 8.2.3 Experiments for Measuring Relaxation Times -- 8.2.3.1 T1 Measurements - the Inversion Recovery Experiment -- 8.2.3.2 The Spin Echo Experiment -- 8.3 Pulse Fourier-Transform (FT) NMR Spectroscopy. 8.3.1 Pulse Excitation of Entire NMR Spectra -- 8.3.2 The Receiver Signal and its Analysis -- 8.4 Experimental Aspects of Pulse Fourier-Transform Spectroscopy -- 8.4.1 The FT NMR Spectrometer - Basic Principles and Operation -- 8.4.1.1 The Computer and the Analog-Digital Converter (ADC) -- 8.4.1.2 RF Sources of an FT NMR Spectrometer -- 8.4.1.3 Transmitter and Signal Phase -- 8.4.1.4 Selective Excitation and Shaped Pulses in FT NMR Spectroscopy -- 8.4.1.5 Pulse Calibration -- 8.4.1.6 Composite Pulses -- 8.4.1.7 Single and Quadrature Detection -- 8.4.1.8 Phase Cycles -- 8.4.2 Complications in FT NMR Spectroscopy -- 8.4.3 Data Improvement -- 8.5 Double Resonance Experiments -- 8.5.1 Homonuclear Double Resonance - Spin Decoupling -- 8.5.2 Heteronuclear Double Resonance -- 8.5.3 Broadband Decoupling -- 8.5.3.1 Broadband Decoupling by CW Modulation -- 8.5.3.2 Broadband Decoupling by Pulse Methods -- 8.5.4 Off-Resonance Decoupling -- References -- Textbooks -- Review articles -- Chapter 9 Two-Dimensional Nuclear Magnetic Resonance Spectroscopy -- 9.1 Principles of Two-Dimensional NMR Spectroscopy -- 9.1.1 Graphical Presentation of Two-Dimensional NMR Spectra -- 9.2 The Spin Echo Experiment in Modern NMR Spectroscopy -- 9.2.1 Time-Dependence of Transverse Magnetization -- 9.2.2 Chemical Shifts and Spin-Spin Coupling Constants and the Spin Echo Experiment -- 9.3 Homonuclear Two-Dimensional Spin Echo Spectroscopy: Separation of the Parameters J and (Se(B for Proton NMR Spectra -- 9.3.1 Applications of Homonuclear 1H J,�I�-Spectroscopy -- 9.3.2 Practical Aspects of 1H J,�I�-Spectroscopy -- 9.4 The COSY Experiment - Two-Dimensional 1H,1H Shift Correlations -- 9.4.1 Some Experimental Aspects of 2D-COSY Spectroscopy -- 9.4.2 Artifacts in COSY Spectra -- 9.4.3 Modifications of the Jeener Pulse Sequence -- 9.4.3.1 COSY-45 -- 9.4.3.2 Long-Range COSY (COSY-LR). 9.4.3.3 COSY with Double Quantum Filter (COSY-DQF) -- 9.5 The Product Operator Formalism -- 9.5.1 Phenomenon of Coherence -- 9.5.2 Operator Basis for an AX System -- 9.5.3 Zero- and Multiple-Quantum Coherences -- 9.5.4 Evolution of Operators -- 9.5.5 The Observables -- 9.5.6 The COSY Experiment within the Product Operator Formalism -- 9.5.7 The COSY Experiment with Double-Quantum Filter (COSY-DQF) -- 9.6 Phase Cycles -- 9.6.1 COSY Experiment -- 9.7 Gradient Enhanced Spectroscopy -- 9.8 Universal Building Blocks for Pulse Sequences -- 9.8.1 Constant Time Experiments: (S}(B1-Decoupled COSY -- 9.8.2 BIRD Pulses -- 9.8.3 Low-Pass Filter -- 9.8.4 z-Filter -- 9.9 Homonuclear Shift Correlation by Double Quantum Selection of AX Systems - the 2D-INADEQUATE Experiment -- 9.10 Single-Scan 2D NMR -- References -- Textbooks and Monographs -- Methods Oriented -- Application Oriented -- Review articles -- Chapter 10 More 1D and 2D NMR Experiments: the Nuclear Overhauser Effect - Polarization Transfer - Spin Lock Experiments - 3D NMR -- 10.1 The Overhauser Effect -- 10.1.1 Original Overhauser Effect -- 10.1.2 Nuclear Overhauser Effect (NOE) -- 10.1.3 One-Dimensional Homonuclear NOE Experiments -- 10.1.3.1 NOE Measurements of Relative Distances between Protons -- 10.1.3.2 NOE Difference Spectroscopy -- 10.1.4 Complications during NOE Measurements -- 10.1.5 Two-Dimensional Homonuclear Overhauser Spectroscopy (NOESY) -- 10.1.6 Two-Dimensional Heteronuclear Overhauser Spectroscopy (HOESY) -- 10.2 Polarization Transfer Experiments -- 10.2.1 SPI Experiment -- 10.2.2 INEPT Pulse Sequence -- 10.3 Rotating Frame Experiments -- 10.3.1 Spin Lock and Hartmann-Hahn Condition -- 10.3.2 Spin Lock Experiments in Solution -- 10.3.2.1 Homonuclear Hartmann-Hahn or TOCSY Experiments -- 10.3.2.2 One-Dimensional Selective TOCSY Spectroscopy -- 10.3.2.3 ROESY Experiment. 10.4 Multidimensional NMR Experiments.

9783527674756


Electronic books.
The Library's homepage is at http://library.iukl.edu.my/.