IUKL Library
Su, Wencong.

The Energy Internet : An Open Energy Platform to Transform Legacy Power Systems into Open Innovation and Global Economic Engines. - 1 online resource (400 pages) - Woodhead Publishing Series in Energy Ser. . - Woodhead Publishing Series in Energy Ser. .

Front Cover -- The Energy Internet -- Related titles -- The Energy Internet -- Copyright -- Contents -- List of contributors -- Preface -- One - Enabling Technologies and Technical Solutions -- 1 - Centralized, decentralized, and distributed control for Energy Internet -- 1.1 Introduction -- 1.1.1 Smart grid versus Energy Internet -- 1.1.2 The role of microgrids in the structure of the Energy Internet -- 1.1.3 Data acquisition in the legacy power system and Energy Internet network -- 1.2 Energy management approaches in energy networks -- 1.2.1 Centralized control -- 1.2.2 Decentralized control -- 1.2.3 Distributed control -- 1.3 Characteristics of communication networks of Energy Internet network -- 1.4 Conclusion and future research -- References -- 2 - Solid state transformers, the Energy Router and the Energy Internet -- 2.1 The Energy Internet -- 2.2 The Energy Router -- 2.3 Medium voltage power electronics based distribution system -- 2.4 Status of solid state transformer developments -- 2.5 Smart grid functionalities of the solid state transformer -- 2.5.1 Reactive power support -- 2.5.2 Voltage sag mitigation -- 2.5.3 Harmonic mitigation -- 2.5.4 Current limiting and short circuit protection -- 2.5.5 DC connectivity and DC microgrid -- 2.5.6 Solid state transformer as an Energy Router -- 2.6 Conclusions -- References -- 3 - Energy Internet blockchain technology -- 3.1 Overview -- 3.2 The application of blockchain technology in energy scenarios -- 3.2.1 The impact of blockchain technology on the Energy Internet -- 3.2.1.1 The inherent consistency of the Energy Internet and blockchain technology -- 3.2.2 Application of blockchain technology in energy scenarios -- 3.2.2.1 Pain points of the energy industry -- Power generation -- Power transmission and distribution -- Power consumption -- 3.2.3 Application scenarios -- 3.2.3.1 Power generation. Auxiliary services -- Power generation management -- Distributed power source operation and maintenance management -- 3.2.3.2 Transmission and distribution -- Automatic dispatch -- Unified multienergy metering -- Security of information and the physical system -- 3.2.3.3 Load -- Design of virtual power plant -- Application in the carbon market -- 3.3 Application case analysis of blockchain technology in the energy industry -- 3.3.1 America: TransActive Grid -- 3.3.2 Australia: Power Ledger -- 3.3.3 China: Energy Blockchain Lab -- 3.4 Challenges in the application of blockchain technology in the energy industry -- 3.4.1 Technical challenges -- 3.4.1.1 Low throughput -- 3.4.1.2 Underdeveloped IOT technology -- 3.4.1.3 Validation breaches and privacy leakage risks -- 3.4.2 Policy challenges -- 3.4.2.1 Regulatory and normative policies -- 3.4.2.2 Industrial monopoly limits the application of the energy blockchain -- 3.4.2.3 Obstacle from the game of stakeholders -- 3.4.2.4 Collection of electricity surcharge -- 3.4.2.5 Initial coin offering financing problem -- 3.5 Conclusion -- References -- Further reading -- 4 - Resilient community microgrids: governance and operational challenges -- 4.1 Introduction -- 4.2 Benefits, challenges, and advantages of multistakeholder microgrids -- 4.2.1 Scale -- 4.2.2 Diversification -- 4.2.3 Enhanced or enabled benefits -- 4.2.4 Challenges for multistakeholder microgrids -- 4.2.4.1 Cost -- 4.2.4.2 Governance and operations -- 4.2.4.3 Technical operations -- 4.3 Benefit of improving restoration rate in the initial recovery phase -- 4.3.1 Major events -- 4.3.1.1 Commercial and industrial cost models -- Medium and large commercial and industrial cost model -- Small commercial and industrial cost model -- 4.3.1.2 Residential cost model -- Food spoilage and meals -- Shelter cost -- Inconvenience costs. Health and safety costs -- 4.3.1.3 Restoration model -- Restoration model case study -- 4.3.1.4 Numerical analysis of the effect of increased number of crews in the restoration model -- 4.3.1.5 Cost analysis of the case study -- 4.4 Potsdam case study -- 4.4.1 Reforming the energy vision overview -- 4.4.2 Potsdam microgrid project -- 4.4.2.1 Monetary and societal benefits -- Generation -- Demand response -- Microgrid controller and system management -- 4.4.2.2 Business model option for potsdam microgrid -- 4.5 Community benefits -- 4.5.1 Regional and societal benefits -- 4.5.2 Cost recovery -- 4.6 Critical issues -- 4.7 Summary -- Acknowledgments -- References -- Further reading -- 5 - Electricity market reform -- 5.1 Introduction -- 5.2 Electricity market paradigms within energy internet -- 5.2.1 Internetwork trading with peer-to-peer models -- 5.2.2 Indirect customer-to-customer trading -- 5.2.3 Prosumer community groups -- 5.3 Transactive energy as a platform for energy transactions -- 5.3.1 Motivation and definition of transactive electrical grid -- 5.3.2 The development of transactive energy -- 5.3.3 Energy transactions and business model innovations -- 5.3.4 Challenges and future development of transactive energy -- 5.4 Conclusion -- References -- 6 - Medium-voltage DC power distribution technology -- 6.1 Development background -- 6.2 Application advantages and scenarios -- 6.3 System architecture technology -- 6.3.1 Topology -- 6.3.2 Bus structure -- 6.3.3 Grounding form -- 6.3.3.1 Grounding location -- 6.3.3.2 Grounding type -- 6.3.4 Organization forms of distributed sources -- 6.3.5 Connection forms between different buses -- 6.4 Key equipment technology -- 6.4.1 Voltage source converter -- 6.4.2 DC transformer -- 6.4.3 DC breaker -- 6.5 Control technology -- 6.5.1 Converter control -- 6.5.2 Multisource coordination control. 6.5.2.1 Bus voltage control -- 6.5.2.2 Power quality management -- 6.5.3 Multibus network-level control -- 6.6 Protection technology -- 6.7 Practical medium-voltage DC Energy Internet systems in China -- 6.7.1 Medium-voltage DC Energy Internet system in Shenzhen -- 6.7.1.1 Technical demands from Baolong Industrial Park -- 6.7.1.2 Two-terminal "Hand in Hand" architecture -- 6.7.1.3 Key equipment scheme -- 6.7.1.4 Multifunctional operation ways -- Two-terminal power supply operation -- Single-terminal power supply operation -- Two-terminal isolation operation -- Power support operation -- STATCOM operation -- Back-to-back operation -- Island operation -- 6.7.1.5 Protection scheme -- 6.7.2 Medium-voltage DC Energy Internet system in Zhuhai -- 6.7.2.1 Technical demands from Tangjiawan Science Park -- 6.7.2.2 Three-terminal architecture -- 6.7.2.3 Key equipment scheme -- 6.7.2.4 Control scheme -- 6.8 Summary -- 7 - Transactive energy in future smart homes -- 7.1 Introduction -- 7.2 Demand response -- 7.3 Demand response programs -- 7.4 Transactive energy -- 7.5 Transactive energy definition -- 7.6 What is the Gridwise Architecture Council? -- 7.7 Transactive energy framework and attributes -- 7.8 Transactive energy principles and purpose -- 7.8.1 Transactive energy purpose -- 7.8.2 Transactive energy principles -- 7.9 Transactive energy control and coordination -- 7.10 Transactive energy challenges -- 7.10.1 Consumer behavior -- 7.10.2 System management -- 7.10.3 Scalability -- 7.10.4 Technology -- 7.11 Transactive energy systems -- 7.11.1 Definition of transactive energy systems -- 7.12 Transactive energy in home energy management systems -- 7.12.1 Challenges and opportunities of home energy management system -- 7.12.2 Case study -- 7.12.2.1 Modeling framework for the smart homes -- 7.12.2.2 Problem formulation for the smart homes -- Objective function. Power balance constraints -- PV constraints -- Battery storage constraints -- Local transaction market constraints -- 7.12.2.3 Operation models for smart homes based on transactive energy management -- 7.12.2.4 Numerical results analysis -- 7.13 Future work -- 7.14 Conclusion -- References -- 8 - Emerging data encryption methods applicable to Energy Internet -- 8.1 Introduction -- 8.2 Importance of digital signatures in the Energy Internet -- 8.3 Secret key cryptography (symmetric key cryptography) -- 8.4 Public key cryptography (asymmetric key cryptography) -- 8.5 Quantum key distribution -- 8.6 Application of quantum key distribution to the Energy Internet -- 8.7 Comparison of different cryptography methods-pros and cons -- 8.8 Future trends and opportunities in cyber security -- References -- Two - Real-world Implementation and Pilot Projects -- 9 - Enabling technologies and technical solutions for the Energy Internet: lessons learned and case studies from Pecan Stre ... -- 9.1 Introduction -- 9.2 Characteristic technologies of the energy internet -- 9.3 A smarter grid: information and communication technology solutions -- 9.3.1 Cybersecurity considerations -- 9.3.2 Big data management and software as a service solutions -- 9.3.2.1 Case study: automated demand response coordination for transformer load balancing -- 9.4 Prosumers: enabling proactive energy consumers -- 9.4.1 Power factor correction strategies -- 9.4.1.1 Case study: battery as generation and load shifting -- 9.4.1.2 Case study: islanding as a demand response application for batteries -- 9.5 Recommendations for accelerating the shift toward clean energy -- 9.6 Conclusion -- References -- 10 - How the Brooklyn Microgrid and TransActive Grid are paving the way to next-gen energy markets -- 10.1 Transactive energy -- 10.1.1 Energy marketplace. 10.1.1.1 Growing adoption of renewable energy.

9780081022153


Electric power distribution-Automation.
Renewable resource integration.


Electronic books.

TK3091 .E547 2019

621.319
The Library's homepage is at http://library.iukl.edu.my/.