IUKL Library
Normal view MARC view ISBD view

Graphene-Based Electrochemical Sensors for Biomolecules.

By: Pandikumar, Alagarsamy.
Contributor(s): Rameshkumar, Perumal.
Material type: materialTypeLabelBookSeries: Micro and Nano Technologies Ser: Publisher: San Diego : Elsevier, 2018Copyright date: �2019Description: 1 online resource (366 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780128156391.Subject(s): Electrochemical sensors | Graphene | Nanocomposites (Materials)Genre/Form: Electronic books.DDC classification: 681.2 Online resources: Click to View
Contents:
Front Cover -- Graphene-Based Electrochemical Sensors for Biomolecules -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Graphene-Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensors -- 3. Importance of Biomolecules -- 4. Graphene -- 4.1. Structure and Properties of Graphene -- 4.2. Synthesis of Graphene -- 4.2.1. Top-Down Methods -- 4.2.2. Bottom-Up Approach -- 5. Electrode Fabrications With Graphene -- 6. Electrochemical Determination of Neurotransmitters, Vitamins, and Amino Acids -- 7. Electrochemical Determination of Purine Derivatives -- 7.1. Electrochemical Determination of UA, XN, and HXN -- 7.2. Electrochemical Determination of DNA Purine Bases (A and G) -- 7.3. Electrochemical Determination of Purine Nucleotides and Nucleosides -- 7.4. Electrochemical Determination of CAF, TP, and AP -- 8. Conclusion and Future Prospects -- References -- Chapter 2: Functionalized Graphene Nanocomposites for Electrochemical Sensors -- 1. Introduction -- 1.1. Functionalized Graphene Nanocomposites -- 1.2. Electrochemical Detection of Biomolecules Using Functionalized Graphene Nanocomposites -- 2. Detection of Nitric Oxide -- 3. Detection of Glucose -- 4. Sensing of Cholesterol -- 5. Detection of Important Neurotransmitters -- 6. Concluding Remarks and Future Prospects -- References -- Chapter 3: Doped-Graphene Modified Electrochemical Sensors -- 1. Introduction -- 2. Heteroatom-Doped Graphene -- 2.1. Element Boron -- 2.2. Element Nitrogen -- 2.3. Element Phosphorus -- 2.4. Element Sulfur -- 3. Heteroatoms Doped Graphene for Electrochemical Sensor Applications -- 3.1. Electrochemical Detection of Hydrogen Peroxide -- 3.2. Electrochemical Detection of Dopamine -- 3.3. Electrochemical Detection of NADH -- 3.4. Electrochemical Detection of Glucose.
3.5. Electrochemical Detection of Ascorbic Acid -- 4. Conclusion and Future Outlooks -- References -- Chapter 4: Graphene-Metal Modified Electrochemical Sensors -- 1. Introduction -- 2. Synthesis of Graphene-Metal NP Hybrids -- 2.1. Direct Mixing Method -- 2.2. Electrodeposition Method -- 2.3. Photochemical Method -- 2.4. Substrate Enhance Electroless Deposition Method -- 2.5. Chemical Reduction Method -- 2.6. Microwave Assisted Synthesis Method -- 2.7. Electrolytic Deposition Method for Synthesis of Graphene-Metal NP Hybrids -- 3. Sensing Application of Graphene-Metal NP Hybrids -- 3.1. Dopamine/Uric Acid/Ascorbic Acid Sensor -- 3.2. Glucose Sensor -- 3.3. Hydrogen Peroxide Sensor -- 3.4. Immunological Sensor -- 3.5. Epinephrine and Norepinephrine Sensor -- 3.6. Levofloxacin Sensor -- 3.7. Ethanol Sensor -- 4. Conclusion -- References -- Further Reading -- Chapter 5: Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Detection of Biomolecules -- 2.1. Dopamine -- 2.2. Glucose -- 2.3. NADH and Cholesterol Sensing -- 2.3.1. Nicotinamide Adenine Dinucleotide Hydrogen -- 2.3.2. Cholesterol Detection -- 3. Conclusion and Future Perspectives -- References -- Chapter 6: Graphene-Metal Chalcogenide Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensing of Biomolecules Using Graphene-Metal Chalcogenide Composites -- 3. Electrochemical Sensing of Biomolecules Based on Enzymatic and Nonenzymatic Approaches Using Graphene-Metal Chalcogeni ... -- 4. Conclusion and Future Prospects -- References -- Chapter 7: Graphene-Polymer Modified Electrochemical Sensors -- 1. Introduction -- 2. Polymers -- 2.1. Synthetic Polymers -- 2.1.1. Polypyrrole -- 2.1.2. Polyaniline -- 2.1.3. Poly(3,4-ethylenedioxythiophene) -- 2.1.4. Nafion -- 2.2. Natural Polymers -- 2.2.1. Chitosan.
2.2.2. Cellulose -- 3. Graphene-Conductive Polymer Hybrid Materials for Development of Electrochemical Sensors -- 3.1. Graphene-Polypyrrole Hybrid Electrochemical Determination of Bioanalytes -- 3.2. Graphene-Polyaniline Hybrid Electrochemical Determination of Bioanalytes -- 3.3. Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Electrochemical Determination of Bioanalytes -- 3.4. Graphene-Nafion Hybrid Electrochemical Determination of Bioanalytes -- 4. Graphene-Biopolymer Hybrid Materials for Development of Electrochemical Sensors -- 4.1. Graphene-Chitosan Hybrid Electrochemical Determination of Bioanalytes -- 4.2. Graphene-Cellulose Hybrid Electrochemical Determination of Bioanalytes -- 5. Conclusion and Future Prospects -- References -- Chapter 8: Graphene-Carbon Nanotubes Modified Electrochemical Sensors -- 1. Introduction -- 2. Use of Nanomaterials in Sensors -- 3. Introduction to Graphene-Carbon Nanotube Composite Materials and Their Advantages -- 4. Electrochemical Sensor Application Fields of Graphene-Carbon Nanotube Composites -- 4.1. Biomolecule Sensors -- 4.2. Pharmaceutical Sensors -- 4.3. Food Sensors -- 5. Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 9: Graphene-Carbon Nitride-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Synthesis of Materials -- 2.1. Preparation of Carbon Nitride Nanomaterials -- 2.2. Preparation of Graphene-Carbon Nitride-Based Nanocomposite Materials and Electrode Modification -- 3. Characterization of Materials -- 3.1. Brunauer-Emmett-Teller Surface Area and X-Ray Diffraction -- 3.2. UV-Visible and Fluorescence Spectroscopy -- 3.3. Fourier Transform Infrared Spectroscopy -- 3.4. Raman Spectroscopy -- 3.5. X-Ray Photoelectron Spectroscopy -- 3.6. Transmission Electron Microscopy -- 4. Electrochemical Behavior and Sensing Applications.
5. Conclusions and Future Prospects -- References -- Chapter 10: Graphene-Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors -- 1. Introduction -- 1.1. Electrochemical Sensors -- 1.2. Advantages of Electrochemical Sensors -- 1.3. Types of Carbon Nanomaterials -- 1.3.1. Carbon Nanotubes -- 1.3.2. Fullerene -- 1.3.3. Graphene -- 1.3.4. Reduced Graphene Oxide -- 1.3.5. Graphene Nanoribbons -- 1.4. Types of Clay Minerals -- 1.4.1. Layered Double Hydroxides -- 1.4.2. Montmorillonite -- 1.4.3. Sepiolite -- 1.4.4. Zeolites -- 1.5. Graphenes in Sensors -- 1.5.1. Graphene and Carbon Nanotubes Nanohybrid Sensors -- 1.5.2. Graphene and Metal Oxide Nanohybrid Sensors -- 1.5.3. Electrochemistry of Graphene -- 1.5.4. Electrochemistry of Clay Particles -- 1.5.5. Importance of Graphene and Clay Nanohybrid Electrodes for Sensor Applications -- 2. Graphene-Clay Nanohybrid Based Electrochemical Sensors -- 2.1. Types of Clay-Graphene Nanohybrid Synthesis -- 2.2. Graphene-Clay Hybrid-Based Electrochemical Sensors -- 2.3. Graphene-Clay Hybrid-Based Gas Sensors -- 2.4. Graphene-Clay Hybrid-Based Biological Sensors (Glucose/H2O2) -- 2.5. Other Graphene-Clay Hybrid-Based Biosensors -- 3. Conclusion and Future Trends -- References -- Further Reading -- Chapter 11: Graphene-Metal-Organic Framework-Modified Electrochemical Sensors -- 1. Introduction -- 2. Mechanism of Charge Transfer in Graphene-MOFs -- 3. Fabrication of Graphene-MOF -- 3.1. Electrophoretic Deposition -- 3.2. Hybrid Hydrothermal Synthesis -- 3.3. Sonochemical Synthesis -- 3.4. In Situ Crystallization Method -- 4. Graphene-MOFs as Electrochemical Sensors in Sensing Biomolecules -- 4.1. Graphene-MOF-Based Glucose Sensors -- 4.2. Graphene-MOF-Based Immunosensors -- 4.3. Graphene-MOF-Based Dopamine Biosensors -- 4.4. Other Graphene-MOF-Based Biomolecular Sensors.
5. Conclusion and Future Perspectives -- References -- Chapter 12: Graphene Paper-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Fabrication of Graphene Paper Electrodes -- 2.1. Wet Chemical Process -- 2.2. Dry Chemical Process -- 2.3. Electrophoretic and Electrospray Deposition Process -- 2.4. Other Methods -- 3. Activation Strategies of Graphene Papers -- 3.1. Posttreatment Process -- 3.2. Metal Anchoring -- 3.3. Metal Oxide Modifications -- 3.4. Polymer Functionalization -- 3.5. Biomolecule Immobilization -- 3.6. Elemental Doping -- 4. Applications of Graphene Paper as Electrochemical Sensors for Biomolecules -- 4.1. Sensing of Glucose and Hydrogen Peroxide -- 4.2. Sensing of Microbes -- 4.3. Other Uses -- 5. Concluding Remarks and Future Perspectives -- Acknowledgments -- References -- Chapter 13: Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules -- 1. Introduction -- 2. Graphene and Derivatives -- 3. General Characteristics of Graphene -- 4. Microfluidic Integrated Biosensors and Sensors for Detection of Biomolecules -- 5. Conclusion and Future Prospects -- Acknowledgments -- References -- Index -- Back Cover.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5567655 1 Available
Total holds: 0

Front Cover -- Graphene-Based Electrochemical Sensors for Biomolecules -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Graphene-Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensors -- 3. Importance of Biomolecules -- 4. Graphene -- 4.1. Structure and Properties of Graphene -- 4.2. Synthesis of Graphene -- 4.2.1. Top-Down Methods -- 4.2.2. Bottom-Up Approach -- 5. Electrode Fabrications With Graphene -- 6. Electrochemical Determination of Neurotransmitters, Vitamins, and Amino Acids -- 7. Electrochemical Determination of Purine Derivatives -- 7.1. Electrochemical Determination of UA, XN, and HXN -- 7.2. Electrochemical Determination of DNA Purine Bases (A and G) -- 7.3. Electrochemical Determination of Purine Nucleotides and Nucleosides -- 7.4. Electrochemical Determination of CAF, TP, and AP -- 8. Conclusion and Future Prospects -- References -- Chapter 2: Functionalized Graphene Nanocomposites for Electrochemical Sensors -- 1. Introduction -- 1.1. Functionalized Graphene Nanocomposites -- 1.2. Electrochemical Detection of Biomolecules Using Functionalized Graphene Nanocomposites -- 2. Detection of Nitric Oxide -- 3. Detection of Glucose -- 4. Sensing of Cholesterol -- 5. Detection of Important Neurotransmitters -- 6. Concluding Remarks and Future Prospects -- References -- Chapter 3: Doped-Graphene Modified Electrochemical Sensors -- 1. Introduction -- 2. Heteroatom-Doped Graphene -- 2.1. Element Boron -- 2.2. Element Nitrogen -- 2.3. Element Phosphorus -- 2.4. Element Sulfur -- 3. Heteroatoms Doped Graphene for Electrochemical Sensor Applications -- 3.1. Electrochemical Detection of Hydrogen Peroxide -- 3.2. Electrochemical Detection of Dopamine -- 3.3. Electrochemical Detection of NADH -- 3.4. Electrochemical Detection of Glucose.

3.5. Electrochemical Detection of Ascorbic Acid -- 4. Conclusion and Future Outlooks -- References -- Chapter 4: Graphene-Metal Modified Electrochemical Sensors -- 1. Introduction -- 2. Synthesis of Graphene-Metal NP Hybrids -- 2.1. Direct Mixing Method -- 2.2. Electrodeposition Method -- 2.3. Photochemical Method -- 2.4. Substrate Enhance Electroless Deposition Method -- 2.5. Chemical Reduction Method -- 2.6. Microwave Assisted Synthesis Method -- 2.7. Electrolytic Deposition Method for Synthesis of Graphene-Metal NP Hybrids -- 3. Sensing Application of Graphene-Metal NP Hybrids -- 3.1. Dopamine/Uric Acid/Ascorbic Acid Sensor -- 3.2. Glucose Sensor -- 3.3. Hydrogen Peroxide Sensor -- 3.4. Immunological Sensor -- 3.5. Epinephrine and Norepinephrine Sensor -- 3.6. Levofloxacin Sensor -- 3.7. Ethanol Sensor -- 4. Conclusion -- References -- Further Reading -- Chapter 5: Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Detection of Biomolecules -- 2.1. Dopamine -- 2.2. Glucose -- 2.3. NADH and Cholesterol Sensing -- 2.3.1. Nicotinamide Adenine Dinucleotide Hydrogen -- 2.3.2. Cholesterol Detection -- 3. Conclusion and Future Perspectives -- References -- Chapter 6: Graphene-Metal Chalcogenide Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensing of Biomolecules Using Graphene-Metal Chalcogenide Composites -- 3. Electrochemical Sensing of Biomolecules Based on Enzymatic and Nonenzymatic Approaches Using Graphene-Metal Chalcogeni ... -- 4. Conclusion and Future Prospects -- References -- Chapter 7: Graphene-Polymer Modified Electrochemical Sensors -- 1. Introduction -- 2. Polymers -- 2.1. Synthetic Polymers -- 2.1.1. Polypyrrole -- 2.1.2. Polyaniline -- 2.1.3. Poly(3,4-ethylenedioxythiophene) -- 2.1.4. Nafion -- 2.2. Natural Polymers -- 2.2.1. Chitosan.

2.2.2. Cellulose -- 3. Graphene-Conductive Polymer Hybrid Materials for Development of Electrochemical Sensors -- 3.1. Graphene-Polypyrrole Hybrid Electrochemical Determination of Bioanalytes -- 3.2. Graphene-Polyaniline Hybrid Electrochemical Determination of Bioanalytes -- 3.3. Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Electrochemical Determination of Bioanalytes -- 3.4. Graphene-Nafion Hybrid Electrochemical Determination of Bioanalytes -- 4. Graphene-Biopolymer Hybrid Materials for Development of Electrochemical Sensors -- 4.1. Graphene-Chitosan Hybrid Electrochemical Determination of Bioanalytes -- 4.2. Graphene-Cellulose Hybrid Electrochemical Determination of Bioanalytes -- 5. Conclusion and Future Prospects -- References -- Chapter 8: Graphene-Carbon Nanotubes Modified Electrochemical Sensors -- 1. Introduction -- 2. Use of Nanomaterials in Sensors -- 3. Introduction to Graphene-Carbon Nanotube Composite Materials and Their Advantages -- 4. Electrochemical Sensor Application Fields of Graphene-Carbon Nanotube Composites -- 4.1. Biomolecule Sensors -- 4.2. Pharmaceutical Sensors -- 4.3. Food Sensors -- 5. Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 9: Graphene-Carbon Nitride-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Synthesis of Materials -- 2.1. Preparation of Carbon Nitride Nanomaterials -- 2.2. Preparation of Graphene-Carbon Nitride-Based Nanocomposite Materials and Electrode Modification -- 3. Characterization of Materials -- 3.1. Brunauer-Emmett-Teller Surface Area and X-Ray Diffraction -- 3.2. UV-Visible and Fluorescence Spectroscopy -- 3.3. Fourier Transform Infrared Spectroscopy -- 3.4. Raman Spectroscopy -- 3.5. X-Ray Photoelectron Spectroscopy -- 3.6. Transmission Electron Microscopy -- 4. Electrochemical Behavior and Sensing Applications.

5. Conclusions and Future Prospects -- References -- Chapter 10: Graphene-Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors -- 1. Introduction -- 1.1. Electrochemical Sensors -- 1.2. Advantages of Electrochemical Sensors -- 1.3. Types of Carbon Nanomaterials -- 1.3.1. Carbon Nanotubes -- 1.3.2. Fullerene -- 1.3.3. Graphene -- 1.3.4. Reduced Graphene Oxide -- 1.3.5. Graphene Nanoribbons -- 1.4. Types of Clay Minerals -- 1.4.1. Layered Double Hydroxides -- 1.4.2. Montmorillonite -- 1.4.3. Sepiolite -- 1.4.4. Zeolites -- 1.5. Graphenes in Sensors -- 1.5.1. Graphene and Carbon Nanotubes Nanohybrid Sensors -- 1.5.2. Graphene and Metal Oxide Nanohybrid Sensors -- 1.5.3. Electrochemistry of Graphene -- 1.5.4. Electrochemistry of Clay Particles -- 1.5.5. Importance of Graphene and Clay Nanohybrid Electrodes for Sensor Applications -- 2. Graphene-Clay Nanohybrid Based Electrochemical Sensors -- 2.1. Types of Clay-Graphene Nanohybrid Synthesis -- 2.2. Graphene-Clay Hybrid-Based Electrochemical Sensors -- 2.3. Graphene-Clay Hybrid-Based Gas Sensors -- 2.4. Graphene-Clay Hybrid-Based Biological Sensors (Glucose/H2O2) -- 2.5. Other Graphene-Clay Hybrid-Based Biosensors -- 3. Conclusion and Future Trends -- References -- Further Reading -- Chapter 11: Graphene-Metal-Organic Framework-Modified Electrochemical Sensors -- 1. Introduction -- 2. Mechanism of Charge Transfer in Graphene-MOFs -- 3. Fabrication of Graphene-MOF -- 3.1. Electrophoretic Deposition -- 3.2. Hybrid Hydrothermal Synthesis -- 3.3. Sonochemical Synthesis -- 3.4. In Situ Crystallization Method -- 4. Graphene-MOFs as Electrochemical Sensors in Sensing Biomolecules -- 4.1. Graphene-MOF-Based Glucose Sensors -- 4.2. Graphene-MOF-Based Immunosensors -- 4.3. Graphene-MOF-Based Dopamine Biosensors -- 4.4. Other Graphene-MOF-Based Biomolecular Sensors.

5. Conclusion and Future Perspectives -- References -- Chapter 12: Graphene Paper-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Fabrication of Graphene Paper Electrodes -- 2.1. Wet Chemical Process -- 2.2. Dry Chemical Process -- 2.3. Electrophoretic and Electrospray Deposition Process -- 2.4. Other Methods -- 3. Activation Strategies of Graphene Papers -- 3.1. Posttreatment Process -- 3.2. Metal Anchoring -- 3.3. Metal Oxide Modifications -- 3.4. Polymer Functionalization -- 3.5. Biomolecule Immobilization -- 3.6. Elemental Doping -- 4. Applications of Graphene Paper as Electrochemical Sensors for Biomolecules -- 4.1. Sensing of Glucose and Hydrogen Peroxide -- 4.2. Sensing of Microbes -- 4.3. Other Uses -- 5. Concluding Remarks and Future Perspectives -- Acknowledgments -- References -- Chapter 13: Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules -- 1. Introduction -- 2. Graphene and Derivatives -- 3. General Characteristics of Graphene -- 4. Microfluidic Integrated Biosensors and Sensors for Detection of Biomolecules -- 5. Conclusion and Future Prospects -- Acknowledgments -- References -- Index -- Back Cover.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.