IUKL Library
Normal view MARC view ISBD view

Advanced Applications in Manufacturing Engineering.

By: Ram, Mangey.
Contributor(s): Paulo Davim, J.
Material type: materialTypeLabelBookPublisher: San Diego : Elsevier Science & Technology, 2018Copyright date: �2019Description: 1 online resource (280 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780081024157.Subject(s): Production engineeringGenre/Form: Electronic books.DDC classification: 670.42 Online resources: Click to View
Contents:
Cover -- Title page -- Copyright -- Contents -- List of Contributors -- Editors' Biography -- Preface -- Acknowledgment -- Chapter 1 - Methodology for Selection and Application of Eco-Efficiency Indicators Fostering Decision-Making and Communicat... -- 1.1 - Motivations and brief chapter overview -- 1.2 - Literature survey and contributions -- 1.3 - Suggested methodology and its application -- 1.3.1 - Overview of the proposed methodology -- 1.3.2 - Step (1)-Selection of indicators for the injection molding sector -- 1.3.2.1 - Key environmental performance indicators -- 1.3.2.1.1 - The ISO 14031 standard and the list of EPIs -- 1.3.2.1.2 - The WBCSD classification of EPIs -- 1.3.2.1.3 - The selection of the KEPIs -- 1.3.2.2 - Value indicators -- 1.3.2.2.1 - The selection of the product-related value indicators -- 1.3.3 - Step (2)-Application to a case study -- 1.3.3.1 - Case study description -- 1.3.3.2 - Environmental profile -- 1.3.3.3 - Value profile -- 1.3.3.4 - Eco-efficiency ratios' profile -- 1.4 - Conclusions -- 1.5 - Appendix A -- References -- Further Readings -- Chapter 2 - Fabrication of Magnetic Tunnel Junctions -- 2.1 - Magnetic tunnel junction -- 2.2 - Junction size -- 2.3 - Growth of multilayer structure -- 2.4 - Molecular beam epitaxy (MBE) -- 2.4.1 - E-beam evaporation -- 2.4.2 - Sputtering deposition -- 2.4.3 - Ion beam sputtering deposition -- 2.5 - Lithography -- 2.5.1 - Photolithography -- 2.5.2 - E-beam lithography -- 2.6 - Patterning of Fe/MgO/Fe system -- 2.7 - Fabrication of device using pseudo/metal masking procedure -- 2.8 - Conclusions -- Acknowledgment -- References -- Chapter 3 - Effect of Equipment's Failure on Gas Turbine Power Plant -- 3.1 - Introduction -- 3.2 - Mathematical modeling details -- 3.2.1 - Notations -- 3.2.2 - Assumptions -- 3.2.3 - System description -- 3.2.4 - Formulation and solution of the model.
3.3 - Particular cases and their numerical computation -- 3.3.1 - Availability analysis -- 3.3.2. Reliability analysis -- 3.4 - Results, discussion, and conclusion -- References -- Chapter 4 - Additive Manufacturing in Injection Molds-Life Cycle Engineering for Technology Selection -- 4.1 - Introduction -- 4.2 - Additive manufacturing in mold manufacturing -- 4.3 - Means and methods -- 4.3.1 - Case study -- 4.3.2 - Conformal cooling technologies -- 4.3.3 - Methods -- 4.4 - The process-based models and their outputs -- 4.4.1 - Process-based model technical relations and assumptions -- 4.4.1.1 - Brazing-alternative-mold produced by Vacuum Furnace Brazing -- 4.4.1.2 - Laser-alternative-mold produced by Direct Metal Laser Sintering -- 4.4.1.3 - Conventional-alternative-mold produced by conventional technologies -- 4.4.1.4 - Injection molding phase -- 4.4.1.5 - End of life phase -- 4.4.2 - Discussion of results -- 4.5 - Results of Life Cycle Engineering assessment -- 4.5.1 - Economic and environmental assessment -- 4.5.2 - Technical assessment -- 4.5.3 - The Life Cycle Engineering-integrated analysis -- 4.6 - Conclusion -- 4.7 - Appendix 1 -- References -- Further Reading -- Chapter 5 - Manufacturing Engineering Requirements in the Early Stages of New Product Development-A Case Study in Two Assem... -- 5.1 - Introduction -- 5.2 - Theoretical framework -- 5.2.1 - Early stages of NPD -- 5.2.2 - Assembly requirements for a new product -- 5.2.3 - Mechanisms, methods, and tools for DFM -- 5.3 - Research approach -- 5.3.1 - Case study method -- 5.3.2 - Data collection -- 5.3.3 - Data analysis -- 5.4 - Empirical findings -- 5.4.1 - Case A: Exhaust component in heavy vehicle industry -- 5.4.1.1 - The NPD process -- 5.4.1.2 - Considered requirements from manufacturing -- 5.4.1.3 - Mechanisms used for the verification and communication of requirements.
5.4.2 - Case B: engine component in the automotive industry -- 5.4.2.1 - The NPD process -- 5.4.2.2 - Considered requirements from manufacturing -- 5.4.2.3 - Mechanisms used for verification and communication in case B -- 5.5 - Analysis and discussion -- 5.5.1 - The applied development processes -- 5.5.2 - Requirement types considered -- 5.5.3 - Mechanisms used for verification and communication -- 5.5.4 - Toward a future classification and support structure for manufacturing requirements -- 5.6 - Conclusion -- References -- Chapter 6 - Development of SMEs Coping Model for Operations Advancement in Manufacturing Technology -- 6.1 - Introduction -- 6.2 - Advances in Manufacturing Technology and its tools -- 6.3 - Small and medium scale industries -- 6.3.1 - Characteristics of small and medium scale industries -- 6.3.2 - Reconfigurable/modular/flexible manufacturing -- 6.3.3 - Additive manufacturing/rapid prototyping -- 6.3.4 - Lean manufacturing -- 6.3.5 - Just-In-Time (JIT) manufacturing -- 6.4 - Coping models for SMES placement in AMT -- 6.4.1 - Coping model flowchart formulation -- 6.4.2 - Case study scenario -- 6.5 - Conclusion -- References -- Chapter 7 - Applications of Computational Methods in Manufacturing Processes -- 7.1 - Introduction -- 7.2 - Meshfree methods -- 7.2.1 - Principle of MMs -- 7.2.2 - Basic approximations and procedure -- 7.2.3 - Classification of MMs -- 7.2.3.1 - Based on strong form formulation -- 7.2.3.1.1 - Smooth particle hydrodynamics -- 7.2.3.1.2 - Reproducing kernel particle method -- 7.2.3.1.3 - Collocation method -- 7.2.3.2 - Based on weak form formulation -- 7.2.3.2.1 - Element free Galerkin method -- 7.2.3.2.2 - Meshfree Petrov-Galerkin method -- 7.2.3.2.3 - Point interpolation method -- 7.2.3.3 - Based on weak-strong form formulation -- 7.3 - Application of computational methods to manufacturing processes.
7.3.1 - Machining -- 7.3.1.1 - Application of MMs to cutting tool analysis -- 7.3.2 - Welding -- 7.3.3 - Casting -- 7.3.4 - Forming -- 7.4 - Numerical implementation -- 7.4.1 - Mathematical formulation for FGM -- 7.4.1.1 - Computation of thermal interaction integral -- 7.4.2 - Results and discussions -- 7.4.2.1 - TBC with single edge crack -- 7.4.2.2 - Simulation of large deformation using die pressing -- 7.5 - Conclusions -- Acknowledgments -- References -- Chapter 8 - Study of Turbulent Plane Circular Jet for Modulation of Recirculation Zone Behind a Cubical Obstruction -- 8.1 - Introduction -- 8.2 - Formulation of the problem -- 8.2.1 - Model description -- 8.2.2 - Boundary conditions -- 8.2.3 - Governing equations -- 8.2.4 - Turbulence model -- 8.2.4.1 - Standard model -- 8.2.5 - Numerical procedure -- 8.3 - Result and discussion -- 8.3.1 - Velocity profile validation with log law -- 8.3.2 - Validation with experimental outcomes -- 8.3.3 - Velocity profile -- 8.3.4 - Contour plot for velocity -- 8.3.5 - Visualization of flow structure in streamline pattern -- 8.3.6 - Static pressure contour -- 8.3.7 - Flow structure and turbulent characteristics -- 8.3.7.1 - Turbulent kinetic energy (TKE) (k) -- 8.3.7.2 - Turbulent kinetic energy contour plot -- 8.3.7.3 - Turbulent intensity (I) -- 8.3.8 - Turbulent intensity (I) contour plots -- 8.3.8.1 - Turbulent dissipation rate, TDR ((Sf(B) -- 8.3.9 - Turbulent dissipation rate, TDR ((Sf(B) contour plot -- 8.4 - Conclusion -- References -- Further Readings -- Index -- Back Cover.
List(s) this item appears in: 20220421 MQA FEST Bachelor of Electronics Engineering with Honours
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5570788 1 Available
Total holds: 0

Cover -- Title page -- Copyright -- Contents -- List of Contributors -- Editors' Biography -- Preface -- Acknowledgment -- Chapter 1 - Methodology for Selection and Application of Eco-Efficiency Indicators Fostering Decision-Making and Communicat... -- 1.1 - Motivations and brief chapter overview -- 1.2 - Literature survey and contributions -- 1.3 - Suggested methodology and its application -- 1.3.1 - Overview of the proposed methodology -- 1.3.2 - Step (1)-Selection of indicators for the injection molding sector -- 1.3.2.1 - Key environmental performance indicators -- 1.3.2.1.1 - The ISO 14031 standard and the list of EPIs -- 1.3.2.1.2 - The WBCSD classification of EPIs -- 1.3.2.1.3 - The selection of the KEPIs -- 1.3.2.2 - Value indicators -- 1.3.2.2.1 - The selection of the product-related value indicators -- 1.3.3 - Step (2)-Application to a case study -- 1.3.3.1 - Case study description -- 1.3.3.2 - Environmental profile -- 1.3.3.3 - Value profile -- 1.3.3.4 - Eco-efficiency ratios' profile -- 1.4 - Conclusions -- 1.5 - Appendix A -- References -- Further Readings -- Chapter 2 - Fabrication of Magnetic Tunnel Junctions -- 2.1 - Magnetic tunnel junction -- 2.2 - Junction size -- 2.3 - Growth of multilayer structure -- 2.4 - Molecular beam epitaxy (MBE) -- 2.4.1 - E-beam evaporation -- 2.4.2 - Sputtering deposition -- 2.4.3 - Ion beam sputtering deposition -- 2.5 - Lithography -- 2.5.1 - Photolithography -- 2.5.2 - E-beam lithography -- 2.6 - Patterning of Fe/MgO/Fe system -- 2.7 - Fabrication of device using pseudo/metal masking procedure -- 2.8 - Conclusions -- Acknowledgment -- References -- Chapter 3 - Effect of Equipment's Failure on Gas Turbine Power Plant -- 3.1 - Introduction -- 3.2 - Mathematical modeling details -- 3.2.1 - Notations -- 3.2.2 - Assumptions -- 3.2.3 - System description -- 3.2.4 - Formulation and solution of the model.

3.3 - Particular cases and their numerical computation -- 3.3.1 - Availability analysis -- 3.3.2. Reliability analysis -- 3.4 - Results, discussion, and conclusion -- References -- Chapter 4 - Additive Manufacturing in Injection Molds-Life Cycle Engineering for Technology Selection -- 4.1 - Introduction -- 4.2 - Additive manufacturing in mold manufacturing -- 4.3 - Means and methods -- 4.3.1 - Case study -- 4.3.2 - Conformal cooling technologies -- 4.3.3 - Methods -- 4.4 - The process-based models and their outputs -- 4.4.1 - Process-based model technical relations and assumptions -- 4.4.1.1 - Brazing-alternative-mold produced by Vacuum Furnace Brazing -- 4.4.1.2 - Laser-alternative-mold produced by Direct Metal Laser Sintering -- 4.4.1.3 - Conventional-alternative-mold produced by conventional technologies -- 4.4.1.4 - Injection molding phase -- 4.4.1.5 - End of life phase -- 4.4.2 - Discussion of results -- 4.5 - Results of Life Cycle Engineering assessment -- 4.5.1 - Economic and environmental assessment -- 4.5.2 - Technical assessment -- 4.5.3 - The Life Cycle Engineering-integrated analysis -- 4.6 - Conclusion -- 4.7 - Appendix 1 -- References -- Further Reading -- Chapter 5 - Manufacturing Engineering Requirements in the Early Stages of New Product Development-A Case Study in Two Assem... -- 5.1 - Introduction -- 5.2 - Theoretical framework -- 5.2.1 - Early stages of NPD -- 5.2.2 - Assembly requirements for a new product -- 5.2.3 - Mechanisms, methods, and tools for DFM -- 5.3 - Research approach -- 5.3.1 - Case study method -- 5.3.2 - Data collection -- 5.3.3 - Data analysis -- 5.4 - Empirical findings -- 5.4.1 - Case A: Exhaust component in heavy vehicle industry -- 5.4.1.1 - The NPD process -- 5.4.1.2 - Considered requirements from manufacturing -- 5.4.1.3 - Mechanisms used for the verification and communication of requirements.

5.4.2 - Case B: engine component in the automotive industry -- 5.4.2.1 - The NPD process -- 5.4.2.2 - Considered requirements from manufacturing -- 5.4.2.3 - Mechanisms used for verification and communication in case B -- 5.5 - Analysis and discussion -- 5.5.1 - The applied development processes -- 5.5.2 - Requirement types considered -- 5.5.3 - Mechanisms used for verification and communication -- 5.5.4 - Toward a future classification and support structure for manufacturing requirements -- 5.6 - Conclusion -- References -- Chapter 6 - Development of SMEs Coping Model for Operations Advancement in Manufacturing Technology -- 6.1 - Introduction -- 6.2 - Advances in Manufacturing Technology and its tools -- 6.3 - Small and medium scale industries -- 6.3.1 - Characteristics of small and medium scale industries -- 6.3.2 - Reconfigurable/modular/flexible manufacturing -- 6.3.3 - Additive manufacturing/rapid prototyping -- 6.3.4 - Lean manufacturing -- 6.3.5 - Just-In-Time (JIT) manufacturing -- 6.4 - Coping models for SMES placement in AMT -- 6.4.1 - Coping model flowchart formulation -- 6.4.2 - Case study scenario -- 6.5 - Conclusion -- References -- Chapter 7 - Applications of Computational Methods in Manufacturing Processes -- 7.1 - Introduction -- 7.2 - Meshfree methods -- 7.2.1 - Principle of MMs -- 7.2.2 - Basic approximations and procedure -- 7.2.3 - Classification of MMs -- 7.2.3.1 - Based on strong form formulation -- 7.2.3.1.1 - Smooth particle hydrodynamics -- 7.2.3.1.2 - Reproducing kernel particle method -- 7.2.3.1.3 - Collocation method -- 7.2.3.2 - Based on weak form formulation -- 7.2.3.2.1 - Element free Galerkin method -- 7.2.3.2.2 - Meshfree Petrov-Galerkin method -- 7.2.3.2.3 - Point interpolation method -- 7.2.3.3 - Based on weak-strong form formulation -- 7.3 - Application of computational methods to manufacturing processes.

7.3.1 - Machining -- 7.3.1.1 - Application of MMs to cutting tool analysis -- 7.3.2 - Welding -- 7.3.3 - Casting -- 7.3.4 - Forming -- 7.4 - Numerical implementation -- 7.4.1 - Mathematical formulation for FGM -- 7.4.1.1 - Computation of thermal interaction integral -- 7.4.2 - Results and discussions -- 7.4.2.1 - TBC with single edge crack -- 7.4.2.2 - Simulation of large deformation using die pressing -- 7.5 - Conclusions -- Acknowledgments -- References -- Chapter 8 - Study of Turbulent Plane Circular Jet for Modulation of Recirculation Zone Behind a Cubical Obstruction -- 8.1 - Introduction -- 8.2 - Formulation of the problem -- 8.2.1 - Model description -- 8.2.2 - Boundary conditions -- 8.2.3 - Governing equations -- 8.2.4 - Turbulence model -- 8.2.4.1 - Standard model -- 8.2.5 - Numerical procedure -- 8.3 - Result and discussion -- 8.3.1 - Velocity profile validation with log law -- 8.3.2 - Validation with experimental outcomes -- 8.3.3 - Velocity profile -- 8.3.4 - Contour plot for velocity -- 8.3.5 - Visualization of flow structure in streamline pattern -- 8.3.6 - Static pressure contour -- 8.3.7 - Flow structure and turbulent characteristics -- 8.3.7.1 - Turbulent kinetic energy (TKE) (k) -- 8.3.7.2 - Turbulent kinetic energy contour plot -- 8.3.7.3 - Turbulent intensity (I) -- 8.3.8 - Turbulent intensity (I) contour plots -- 8.3.8.1 - Turbulent dissipation rate, TDR ((Sf(B) -- 8.3.9 - Turbulent dissipation rate, TDR ((Sf(B) contour plot -- 8.4 - Conclusion -- References -- Further Readings -- Index -- Back Cover.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.