IUKL Library
Normal view MARC view ISBD view

Modern Approaches in Drug Discovery.

By: Lesburg, Charles.
Contributor(s): Lesburg, Charles.
Material type: materialTypeLabelBookSeries: Issn Ser: Publisher: San Diego : Elsevier Science & Technology, 2018Copyright date: �2018Description: 1 online resource (340 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780128153840.Subject(s): Pharmaceutical chemistry | Drugs-DesignGenre/Form: Electronic books.DDC classification: 615.19 Online resources: Click to View
Contents:
Front Cover -- Modern Approaches in Drug Discovery -- Copyright -- Contents -- Contributors -- Preface -- References -- Chapter One: Risk Management in Early Discovery Medicinal Chemistry -- 1. Introduction -- 2. Risk in Drug Discovery -- 3. Management of Risks in Drug Discovery -- 4. General Strategies for Managing Risks -- 4.1. Business Models for Managing Risk -- 4.2. The Four Pillars -- 4.3. The Five Dimensions of Drug Discovery Productivity -- 5. Our Four Pillars of Early Discovery Derisking -- 5.1. Right Library -- 5.1.1. Reactive Compounds -- 5.1.2. Solubility and Physiochemical Properties -- 5.1.3. Purity and Structure Analysis of the Library Compounds -- 5.2. Right Assays -- 5.2.1. Derisking Interferences Through Assay Design -- 5.2.2. Sources of Compound-Mediated Assay Interference -- 5.2.3. Bioactivity Confirmation -- 5.2.4. Assay Design to Mitigate Compound-Mediated Assay Interferences -- 5.2.5. Post-HTS Counter-Screens to Derisk Compound-Mediated Assay Interferences -- 5.3. Right Compounds -- 5.4. Right Series -- 6. Advanced Topics -- 6.1. Assessing Readout Susceptibility and Specificity -- 6.2. Risk From Irreproducible Results -- 7. Summary -- References -- Further Reading -- Chapter Two: Target Identification Using Chemical Probes -- 1. Introduction -- 2. Target Engagement Assays -- 2.1. Fluorescence Recovery After Photobleaching Assays -- 2.2. Bioluminescence Resonance Energy Transfer Assays -- 2.3. Enzyme Fragment Complementation (EFC) Assays -- 2.4. Cellular Thermal Shift Assays -- 2.5. Activity-Based Assays -- 2.6. Proteolysis Targeting Chimeras -- 3. Probe Screening in Patient-Derived Assays -- 3.1. Advantages of Patient-Derived Assays -- 3.2. Disadvantages of Patient-Derived Assays -- 3.3. Step by Step Guide for Hit Validation and Prioritization -- 3.3.1. Cellular Viability Assays -- 3.3.2. Phenotypic Assay Design.
3.3.3. Dose Responses and Control Compounds -- 3.3.4. Target Validation With Gene Modulating Techniques -- 3.3.5. Functional Assays for Validation -- 4. Case Studies -- 4.1. G9a/GLP Histone Methyl Transferase Inhibitors -- 4.2. BRD9 Bromodomain Inhibitors -- 4.3. Other Examples -- 4.3.1. CDK4 and Exportin Inhibitors -- 4.3.2. KRAS Binders -- 4.3.3. BTK Inhibitors -- 5. Summary and Outlook -- References -- Chapter Three: Mining the Microbiome for Drug Targets -- 1. Introduction -- 2. Sample Collection and Sequencing for MWAS -- 2.1. Controlling for Heterogeneity in the Cohort -- 2.2. Sample Preservation -- 2.2.1. Reagents for Room-Temperature Preservation of Metagenomic Samples -- 2.3. DNA Extraction -- 2.4. Considerations in Shotgun Sequencing -- 2.4.1. Reagents for Metagenomic Shotgun Sequencing -- 3. Identifying Potential Drug Targets -- 3.1. Pinpointing the Disease-Associated Microbial Taxa -- 3.1.1. Software or Algorithms -- 3.2. Mining the Gene Functions -- 3.2.1. Databases for Mining Gene Functions -- 4. Summary and Outlook -- References -- Chapter Four: Screening Library Design -- 1. Diversity in Screening Library Design -- 2. Methods -- 3. Case Studies -- 4. Natural Products for Screening Library Design -- 5. Library Design for Screening Fragments -- 6. Virtual Library Design -- 7. Creating a Screening Library -- 8. Final Thoughts -- References -- Chapter Five: Design of a Fragment-Screening Library -- 1. Introduction -- 2. Compiling a Dataset of Compounds -- 3. Calculating Properties and Selecting a Representative Set -- 4. Library Quality Control -- 5. Sample Storage and Preparation -- 6. 1D H NMR -- 7. H Water-LOGSY -- 8. Failure Rate -- 9. SPR Reference Surface Binding -- 10. Mixture Design -- 11. Conclusion -- References -- Chapter Six: Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond -- 1. Introduction.
2. SICLOPPS -- 3. mRNA Display -- 4. The Path From Peptide Hit to the Clinic -- 5. Conclusions -- References -- Chapter Seven: A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays -- 1. Introduction -- 2. Protein Denaturation Assays in Hit Identification -- 2.1. Differential Scanning Fluorimetry -- 2.1.1. Assay Development -- 2.1.2. General Considerations About Selecting Assay Buffer, DSF Dye, Protein, and Instrumentation -- 2.1.3. Setting up a Primary DSF Screen -- 2.1.4. Assay Protocol to Test Compounds -- 2.1.4.1. Material -- 2.1.4.2. Preparation of Dye/Protein Mix -- 2.1.4.3. Preparation of Ready-to-Use DSF Assay Plate -- 2.1.4.4. Assay Assembly and Measurement -- 2.1.5. DSF Data Analysis -- 2.2. Other Protein Denaturation Methods -- 2.2.1. Differential Static Light Scattering -- 2.2.2. Isothermal Chemical Denaturation -- 3. SPR in Low Molecular Weight Compound Screening -- 3.1. SPR in LMW Affinity Screening -- 3.1.1. Clean Screen -- 3.1.1.1. Instrument and Sensor Chip Preparation -- 3.1.1.2. Running Buffer Preparation -- 3.1.1.3. Compound Plate Preparation -- 3.1.1.4. Instrument Operation -- 3.1.1.5. Data Analysis -- 3.1.2. Binding Level Screen -- 3.1.2.1. Instrument and Sensor Chip Preparation -- 3.1.2.2. Running Buffer Preparation -- 3.1.2.3. Compound Plate and Solvent Correction Preparation -- 3.1.2.4. Instrument Operation -- 3.1.2.5. Data Analysis -- 3.1.3. Affinity Screen Protocol -- 3.1.3.1. Compound Plate and Solvent Correction Preparation -- 3.1.3.2. Instrument Operation -- 3.1.3.3. Data Analysis -- 4. Conclusion -- Acknowledgments -- References -- Chapter Eight: Second-Harmonic Generation (SHG) for Conformational Measurements: Assay Development, Optimization, and Scr ... -- 1. Introduction -- 2. Technology Background -- 3. Assay Development -- 3.1. Before Starting.
3.1.1. Choosing the Surface -- 3.1.2. SHG Assay-Compatible Buffers -- 3.1.3. Choosing SHG Assay Controls -- 3.2. Labeling -- 3.2.1. General Considerations for Labeling: SE Chemistry -- 3.2.2. General Considerations for Labeling: Maleimide Chemistry -- 3.2.3. Labeling Protocol -- 3.2.4. Conjugate Characterization: Determining DoL -- 3.2.5. Fine-Tuning the Native Residue Labeling Reaction -- 3.2.6. Engineered Residue Labeling vs Native Residue Labeling -- 3.2.7. Labeling Oligonucleotides -- 3.3. Tethering -- 3.3.1. Preparing the Ni-NTA SLB Surface -- 3.3.2. Conjugate Deposition -- 4. Running an SHG Assay -- 5. SHG Assay Development: Example -- 6. Screening -- 6.1. Scale to Screen -- 6.2. Small Molecule/Fragment Screening Concentrations -- 6.3. Running the Screen -- 6.4. Hit Calling -- 6.5. Nuisance Compounds -- 6.6. Hit Validation -- References -- Chapter Nine: An Array-Based Ligand Discovery Platform for Proteins With Short Half-Lives -- 1. Introduction -- 2. Expression of Protein by IVT -- 2.1. IVT Protein Expression -- 2.1.1. Reagents -- 2.1.2. Equipment -- 2.1.3. Protocol -- 2.2. Target Protein Quantification and Stability Assessment -- 2.2.1. Target Protein Quantification -- 2.2.2. Target Stability Assessment -- 3. SMM Screening -- 3.1. SMM Manufacture -- 3.1.1. Selection of Glass Substrate -- 3.1.2. Inclusion of Small-Molecule Controls -- 3.2. Screening of Target Protein -- 3.2.1. Reagents -- 3.2.2. Equipment -- 3.2.3. Protocol -- 4. Analysis of SMM Screening Data -- 4.1. Defining SNR Values for Each Array Feature -- 4.2. Computing and Interpreting Screening Statistics -- 5. Iterative Optimization of SMM Screening Conditions -- 5.1. Counter-Screening -- 5.2. Optimization of Protein Concentration and Antibody-Based Detection -- 6. Summary -- Acknowledgments -- References.
Chapter Ten: High Content, Phenotypic Assays and Screens for Compounds Modulating Cellular Processes in Primary Neurons -- 1. Introduction -- 2. HCS for Compounds Increasing Mitochondrial Content, Elongation, and Improving Health -- 2.1. Labeling of Mitochondria in Primary Neurons -- 2.1.1. Fluorescent Dyes -- 2.1.2. Expression of Fluorescent Reporters -- 2.2. Culturing of Primary Neurons -- 2.2.1. Equipment and Tools -- 2.2.2. Buffers and Reagents -- 2.2.3. Procedure -- 2.2.4. Notes -- 2.3. Compound Transfer -- 2.3.1. Equipment and Tools -- 2.3.2. Buffers and Reagents -- 2.3.3. Procedure -- 2.3.4. Notes -- 2.4. Imaging -- 2.4.1. Equipment -- 2.4.2. Specifications and Settings -- 2.4.3. Notes -- 2.5. Automated Image Analysis -- 2.5.1. Step-By-Step Procedure for CellProfiler -- 2.5.2. Notes -- 2.6. Analyzing the Data -- 2.6.1. Individual Object Measurements of Cell-Level Data -- 2.6.2. Well-Level Data -- 2.6.3. Assay Performance and Hit Selection -- 2.6.4. Step-By-Step Data Analysis Procedure Using Four Fields/Well and Four Replicate Plates -- 2.6.5. Notes -- 3. Summary and Conclusions -- References -- Further Reading -- Chapter Eleven: Achieving a Good Crystal System for Crystallographic X-Ray Fragment Screening -- 1. Introduction -- 2. Process Overview and Constraints on Crystals -- 3. Ways to Establish a Suitable Crystal System -- 3.1. Crystallization -- 3.2. Seeding -- 3.3. Protein Engineering -- 3.4. Test for Transferability -- 4. Common Problems -- 4.1. Poor Reproducibility -- 4.2. Poor X-Ray Diffraction Consistency -- 4.3. Difficulties With Crystallization Format -- 4.4. Drop Issues -- 4.5. Poor Soaking Tolerance -- 4.6. High Salt Conditions -- 5. Map and Model Considerations -- 6. Conclusion -- References -- Chapter Twelve: Hit-to-Lead: Hit Validation and Assessment -- 1. Introduction -- 2. Hit Assessment and Prioritization.
2.1. Hit Quality Assessment.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5573493 1 Available
Total holds: 0

Front Cover -- Modern Approaches in Drug Discovery -- Copyright -- Contents -- Contributors -- Preface -- References -- Chapter One: Risk Management in Early Discovery Medicinal Chemistry -- 1. Introduction -- 2. Risk in Drug Discovery -- 3. Management of Risks in Drug Discovery -- 4. General Strategies for Managing Risks -- 4.1. Business Models for Managing Risk -- 4.2. The Four Pillars -- 4.3. The Five Dimensions of Drug Discovery Productivity -- 5. Our Four Pillars of Early Discovery Derisking -- 5.1. Right Library -- 5.1.1. Reactive Compounds -- 5.1.2. Solubility and Physiochemical Properties -- 5.1.3. Purity and Structure Analysis of the Library Compounds -- 5.2. Right Assays -- 5.2.1. Derisking Interferences Through Assay Design -- 5.2.2. Sources of Compound-Mediated Assay Interference -- 5.2.3. Bioactivity Confirmation -- 5.2.4. Assay Design to Mitigate Compound-Mediated Assay Interferences -- 5.2.5. Post-HTS Counter-Screens to Derisk Compound-Mediated Assay Interferences -- 5.3. Right Compounds -- 5.4. Right Series -- 6. Advanced Topics -- 6.1. Assessing Readout Susceptibility and Specificity -- 6.2. Risk From Irreproducible Results -- 7. Summary -- References -- Further Reading -- Chapter Two: Target Identification Using Chemical Probes -- 1. Introduction -- 2. Target Engagement Assays -- 2.1. Fluorescence Recovery After Photobleaching Assays -- 2.2. Bioluminescence Resonance Energy Transfer Assays -- 2.3. Enzyme Fragment Complementation (EFC) Assays -- 2.4. Cellular Thermal Shift Assays -- 2.5. Activity-Based Assays -- 2.6. Proteolysis Targeting Chimeras -- 3. Probe Screening in Patient-Derived Assays -- 3.1. Advantages of Patient-Derived Assays -- 3.2. Disadvantages of Patient-Derived Assays -- 3.3. Step by Step Guide for Hit Validation and Prioritization -- 3.3.1. Cellular Viability Assays -- 3.3.2. Phenotypic Assay Design.

3.3.3. Dose Responses and Control Compounds -- 3.3.4. Target Validation With Gene Modulating Techniques -- 3.3.5. Functional Assays for Validation -- 4. Case Studies -- 4.1. G9a/GLP Histone Methyl Transferase Inhibitors -- 4.2. BRD9 Bromodomain Inhibitors -- 4.3. Other Examples -- 4.3.1. CDK4 and Exportin Inhibitors -- 4.3.2. KRAS Binders -- 4.3.3. BTK Inhibitors -- 5. Summary and Outlook -- References -- Chapter Three: Mining the Microbiome for Drug Targets -- 1. Introduction -- 2. Sample Collection and Sequencing for MWAS -- 2.1. Controlling for Heterogeneity in the Cohort -- 2.2. Sample Preservation -- 2.2.1. Reagents for Room-Temperature Preservation of Metagenomic Samples -- 2.3. DNA Extraction -- 2.4. Considerations in Shotgun Sequencing -- 2.4.1. Reagents for Metagenomic Shotgun Sequencing -- 3. Identifying Potential Drug Targets -- 3.1. Pinpointing the Disease-Associated Microbial Taxa -- 3.1.1. Software or Algorithms -- 3.2. Mining the Gene Functions -- 3.2.1. Databases for Mining Gene Functions -- 4. Summary and Outlook -- References -- Chapter Four: Screening Library Design -- 1. Diversity in Screening Library Design -- 2. Methods -- 3. Case Studies -- 4. Natural Products for Screening Library Design -- 5. Library Design for Screening Fragments -- 6. Virtual Library Design -- 7. Creating a Screening Library -- 8. Final Thoughts -- References -- Chapter Five: Design of a Fragment-Screening Library -- 1. Introduction -- 2. Compiling a Dataset of Compounds -- 3. Calculating Properties and Selecting a Representative Set -- 4. Library Quality Control -- 5. Sample Storage and Preparation -- 6. 1D H NMR -- 7. H Water-LOGSY -- 8. Failure Rate -- 9. SPR Reference Surface Binding -- 10. Mixture Design -- 11. Conclusion -- References -- Chapter Six: Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond -- 1. Introduction.

2. SICLOPPS -- 3. mRNA Display -- 4. The Path From Peptide Hit to the Clinic -- 5. Conclusions -- References -- Chapter Seven: A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays -- 1. Introduction -- 2. Protein Denaturation Assays in Hit Identification -- 2.1. Differential Scanning Fluorimetry -- 2.1.1. Assay Development -- 2.1.2. General Considerations About Selecting Assay Buffer, DSF Dye, Protein, and Instrumentation -- 2.1.3. Setting up a Primary DSF Screen -- 2.1.4. Assay Protocol to Test Compounds -- 2.1.4.1. Material -- 2.1.4.2. Preparation of Dye/Protein Mix -- 2.1.4.3. Preparation of Ready-to-Use DSF Assay Plate -- 2.1.4.4. Assay Assembly and Measurement -- 2.1.5. DSF Data Analysis -- 2.2. Other Protein Denaturation Methods -- 2.2.1. Differential Static Light Scattering -- 2.2.2. Isothermal Chemical Denaturation -- 3. SPR in Low Molecular Weight Compound Screening -- 3.1. SPR in LMW Affinity Screening -- 3.1.1. Clean Screen -- 3.1.1.1. Instrument and Sensor Chip Preparation -- 3.1.1.2. Running Buffer Preparation -- 3.1.1.3. Compound Plate Preparation -- 3.1.1.4. Instrument Operation -- 3.1.1.5. Data Analysis -- 3.1.2. Binding Level Screen -- 3.1.2.1. Instrument and Sensor Chip Preparation -- 3.1.2.2. Running Buffer Preparation -- 3.1.2.3. Compound Plate and Solvent Correction Preparation -- 3.1.2.4. Instrument Operation -- 3.1.2.5. Data Analysis -- 3.1.3. Affinity Screen Protocol -- 3.1.3.1. Compound Plate and Solvent Correction Preparation -- 3.1.3.2. Instrument Operation -- 3.1.3.3. Data Analysis -- 4. Conclusion -- Acknowledgments -- References -- Chapter Eight: Second-Harmonic Generation (SHG) for Conformational Measurements: Assay Development, Optimization, and Scr ... -- 1. Introduction -- 2. Technology Background -- 3. Assay Development -- 3.1. Before Starting.

3.1.1. Choosing the Surface -- 3.1.2. SHG Assay-Compatible Buffers -- 3.1.3. Choosing SHG Assay Controls -- 3.2. Labeling -- 3.2.1. General Considerations for Labeling: SE Chemistry -- 3.2.2. General Considerations for Labeling: Maleimide Chemistry -- 3.2.3. Labeling Protocol -- 3.2.4. Conjugate Characterization: Determining DoL -- 3.2.5. Fine-Tuning the Native Residue Labeling Reaction -- 3.2.6. Engineered Residue Labeling vs Native Residue Labeling -- 3.2.7. Labeling Oligonucleotides -- 3.3. Tethering -- 3.3.1. Preparing the Ni-NTA SLB Surface -- 3.3.2. Conjugate Deposition -- 4. Running an SHG Assay -- 5. SHG Assay Development: Example -- 6. Screening -- 6.1. Scale to Screen -- 6.2. Small Molecule/Fragment Screening Concentrations -- 6.3. Running the Screen -- 6.4. Hit Calling -- 6.5. Nuisance Compounds -- 6.6. Hit Validation -- References -- Chapter Nine: An Array-Based Ligand Discovery Platform for Proteins With Short Half-Lives -- 1. Introduction -- 2. Expression of Protein by IVT -- 2.1. IVT Protein Expression -- 2.1.1. Reagents -- 2.1.2. Equipment -- 2.1.3. Protocol -- 2.2. Target Protein Quantification and Stability Assessment -- 2.2.1. Target Protein Quantification -- 2.2.2. Target Stability Assessment -- 3. SMM Screening -- 3.1. SMM Manufacture -- 3.1.1. Selection of Glass Substrate -- 3.1.2. Inclusion of Small-Molecule Controls -- 3.2. Screening of Target Protein -- 3.2.1. Reagents -- 3.2.2. Equipment -- 3.2.3. Protocol -- 4. Analysis of SMM Screening Data -- 4.1. Defining SNR Values for Each Array Feature -- 4.2. Computing and Interpreting Screening Statistics -- 5. Iterative Optimization of SMM Screening Conditions -- 5.1. Counter-Screening -- 5.2. Optimization of Protein Concentration and Antibody-Based Detection -- 6. Summary -- Acknowledgments -- References.

Chapter Ten: High Content, Phenotypic Assays and Screens for Compounds Modulating Cellular Processes in Primary Neurons -- 1. Introduction -- 2. HCS for Compounds Increasing Mitochondrial Content, Elongation, and Improving Health -- 2.1. Labeling of Mitochondria in Primary Neurons -- 2.1.1. Fluorescent Dyes -- 2.1.2. Expression of Fluorescent Reporters -- 2.2. Culturing of Primary Neurons -- 2.2.1. Equipment and Tools -- 2.2.2. Buffers and Reagents -- 2.2.3. Procedure -- 2.2.4. Notes -- 2.3. Compound Transfer -- 2.3.1. Equipment and Tools -- 2.3.2. Buffers and Reagents -- 2.3.3. Procedure -- 2.3.4. Notes -- 2.4. Imaging -- 2.4.1. Equipment -- 2.4.2. Specifications and Settings -- 2.4.3. Notes -- 2.5. Automated Image Analysis -- 2.5.1. Step-By-Step Procedure for CellProfiler -- 2.5.2. Notes -- 2.6. Analyzing the Data -- 2.6.1. Individual Object Measurements of Cell-Level Data -- 2.6.2. Well-Level Data -- 2.6.3. Assay Performance and Hit Selection -- 2.6.4. Step-By-Step Data Analysis Procedure Using Four Fields/Well and Four Replicate Plates -- 2.6.5. Notes -- 3. Summary and Conclusions -- References -- Further Reading -- Chapter Eleven: Achieving a Good Crystal System for Crystallographic X-Ray Fragment Screening -- 1. Introduction -- 2. Process Overview and Constraints on Crystals -- 3. Ways to Establish a Suitable Crystal System -- 3.1. Crystallization -- 3.2. Seeding -- 3.3. Protein Engineering -- 3.4. Test for Transferability -- 4. Common Problems -- 4.1. Poor Reproducibility -- 4.2. Poor X-Ray Diffraction Consistency -- 4.3. Difficulties With Crystallization Format -- 4.4. Drop Issues -- 4.5. Poor Soaking Tolerance -- 4.6. High Salt Conditions -- 5. Map and Model Considerations -- 6. Conclusion -- References -- Chapter Twelve: Hit-to-Lead: Hit Validation and Assessment -- 1. Introduction -- 2. Hit Assessment and Prioritization.

2.1. Hit Quality Assessment.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.