IUKL Library
Normal view MARC view ISBD view

Membrane Transport in Plants.

By: Maurel, Christophe.
Material type: materialTypeLabelBookSeries: Issn Ser: Publisher: San Diego : Elsevier Science & Technology, 2018Copyright date: �2018Description: 1 online resource (358 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780128096222.Subject(s): Plant membranes | Biological transportGenre/Form: Electronic books.DDC classification: 581.875 Online resources: Click to View
Contents:
Front Cover -- Membrane Transport in Plants -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: The ABC of ABC Transporters -- 1. Structural and Enzymatic Properties -- 2. Substrates and Functions -- 2.1. Hormone Transport -- 2.2. Response to Biotic Stresses -- 2.3. Surface Structures -- 2.4. Detoxification -- 2.5. Additional Functions -- 3. Open Questions -- References -- Chapter Two: Plant Aquaporins -- 1. Introduction -- 2. Plant Aquaporin Diversity -- 2.1. Evolution and Diversity of Plant Aquaporins -- 2.2. Cellular and Subcellular Localisation -- 2.2.1. Plant AQPs Exhibit Membrane Specialisation -- 2.2.2. Increasing Evidence of Finite Subcellular Localisation -- 2.3. Specialised Substrate Specificities -- 2.3.1. Water -- 2.3.2. Hydrogen Peroxide -- 2.3.3. Ammonia and Urea -- 2.3.4. Metalloids -- 2.3.5. Gases -- 2.3.6. Ions -- 3. Molecular Function and Regulation -- 3.1. Structural Conformation and Specificity Determinants -- 3.1.1. A Conserved Overall Structural Conformation -- 3.1.2. Selectivity Filters -- 3.2. Various Levels of Regulation -- 3.2.1. Cellular Trafficking and Aquaporin Interactions -- 3.2.2. Gating -- 3.2.3. Cotranslational and Posttranslational Modification -- 3.2.4. Importance of the Lipidic Environment -- 4. Conclusion and Perspectives -- References -- Further Reading -- Chapter Three: Heavy Metal Pumps in Plants: Structure, Function and Origin -- 1. Copper and Zinc Homeostasis in Eukaryotes -- 2. P-Type ATPases Are Primary Active Pumps Found in All Cells -- 3. P1B-Type ATPases in Plants -- 4. Mechanism of Pumping by P-Type ATPases -- 5. Structure and Mechanism of P1B ATPases -- 6. Function of the Terminal Metal Binding Domains -- 7. Classification of P1B ATPases -- 8. The Origin of P1B ATPases in Plants -- 9. The Origin of P1B-2 ATPases in Plants -- 10. Future Perspectives -- References -- Further Reading.
Chapter Four: Metal Transport in the Developing Plant Seed -- 1. General Principles in Plant Metal Homeostasis -- 2. Arabidopsis Seed Metal Homeostasis -- 3. Post-Phloem Metal Transport -- 4. From Seed Coat to the Endosperm, and Further to the Embryo -- 5. Metal Transport Within the Embryo -- 6. Do Tonoplast Transporters Control Metal Acquisition in the Embryo? -- Acknowledgements -- References -- Chapter Five: Transporters and Mechanisms of Hormone Transport in Arabidopsis -- 1. Introduction -- 2. Auxin -- 2.1. PINs as Polar Auxin Efflux Transporters -- 2.2. ABCBs as Non-Polar Auxin Efflux Transporters -- 2.3. AUX/LAX as Auxin Influx Transporters -- 2.4. Transporters Controlling Intracellular Auxin Homeostasis -- 2.5. Auxin Transporters Mediating Plant Adaptive Responses -- 3. Cytokinins -- 4. Abscisic Acid (ABA) -- 5. Gibberellins (GA) -- 6. Jasmonates -- 7. Ethylene -- 8. Brassinosteroids -- 9. Strigolactones -- 10. Conclusion -- Acknowledgements -- References -- Further Reading -- Chapter Six: Root Nitrate Uptake -- 1. Introduction -- 2. Characterization of NO3 Transport Systems -- 2.1. Root NO3 Uptake -- 2.2. Root NO3 Transporters -- 3. Regulation of Root NO3 Acquisition -- 3.1. Regulation of Root NO3 Transporters -- 3.2. Regulation of Root Development -- 3.3. Molecular Elements -- 3.3.1. Common Regulatory Elements for Root NO3- Transporters and Root Development -- 3.3.2. Regulatory Elements Specific for Root NO3- Transporters or Root Development -- 4. Nitrate Transporter-Based Strategies for Improving NUE in Crops -- 5. Conclusion -- References -- Chapter Seven: The Regulation of Ion Channels and Transporters in the Guard Cell -- 1. Introduction -- 2. Proton Pumps -- 2.1. Plasma Membrane H-ATPases -- 2.2. Vacuolar V-Type ATPases and Pyrophosphatases -- 3. K Channels and Transporters -- 3.1. Plasma Membrane K Channels.
3.2. Vacuolar K Transport -- 4. Anion Transport -- 4.1. Plasma Membrane Anion Channels -- 4.2. Vacuolar Anion Transport During Stomatal Movement -- 5. Ca Transporters -- 5.1. Plasma Membrane Ca Transporters -- 5.2. Vacuolar Membrane Ca Transporters -- 6. Summary -- Acknowledgement -- References -- Chapter Eight: The Pollen Plasma Membrane Permeome Converts Transmembrane Ion Transport Into Speed -- 1. Introduction -- 2. The Pollen Permeome-Ion Transporter Classes Expressed in Pollen -- 2.1. The Pollen Plasma Membrane Permeome -- 2.2. Ion Transport -- 2.2.1. Primary Active Transport and the PM Proton Pump -- 2.2.2. K Transport -- 2.2.3. Ca Transport -- 2.2.4. Anion Transport -- 2.3. Metabolite Transport -- 2.3.1. Sugar Transport -- 2.3.2. Amino Acid/Peptide Transport -- 2.3.3. Boron Transport -- 2.4. Heavy Metal Ion Transport -- 3. Concerted Action of Ion Transport Leads to Spatial Self-organization and Drives Tube Growth -- 3.1. Examples of Heterogeneous Distribution in the Plasma Membrane -- 3.2. Pattern Formation by Electrophoretic Mobility of Membrane Proteins -- 4. Conclusion -- Acknowledgements -- References -- Chapter Nine: Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance -- 1. Introduction -- 2. Essentiality of Xylem Ion Loading for Abiotic Stress Tolerance -- 3. The Molecular Identity of the Key Transport Systems Mediating Xylem Ion Loading -- 3.1. Sodium -- 3.1.1. SOS1 -- 3.1.2. HKT -- 3.1.3. NSCC -- 3.1.4. CNGC -- 3.1.5. GLR -- 3.1.6. Aquaporins -- 3.1.7. CCC -- 3.2. Chloride -- 3.3. Potassium -- 4. Stress-Induced Regulation of Xylem Ion Loading and Its Implications -- 4.1. Sodium -- 4.1.1. Transcriptional Changes -- 4.1.2. Post-translational Regulation and Signalling -- 4.2. Chloride -- 4.2.1. Transcriptional Changes -- 4.2.2. Post-translational Regulation and Signalling -- 4.3. Potassium.
4.3.1. Transcriptional Changes -- 4.3.2. Post-translational Regulation and Signalling Pathways -- 5. Implications for Plant Breeding -- Acknowledgements -- References -- Further Reading -- Chapter Ten: The Role of Plant Transporters in Mycorrhizal Symbioses -- 1. Introduction -- 2. Ectomycorrhizal Symbiosis Requires Tightly Regulated Plant Membrane Transport -- 2.1. Plant Root�A�s Uptake of Mineral Nutrients and Water Transferred From Symbiotic Fungi -- 2.1.1. Plant Phosphate Nutrition -- 2.1.2. Ectomycorrhizal Contribution to Nitrogen Nutrition -- 2.1.3. Potassium -- 2.1.4. Ectomycorrhizal Fungi Modify Root Water Transport in Plants -- 2.2. Delivering Carbon Food for the Fungal Partner -- 2.3. Communication Between Symbiotic Partners -- 3. Arbuscular Mycorrhizal Fungi Control Plant Ion Channels and Transporters -- 3.1. Plant Phosphate Transporters Are Key Elements for Symbiotic Functioning -- 3.2. Root Mineral Nutrient Transport Adapts to Mycorrhizal Interaction -- 3.2.1. Nitrogen Acquisition by the Plant in Arbuscular Mycorrhizae -- 3.2.2. Potassium Transport in Arbuscular Mycorrhizae -- 3.2.3. Transport of Metal Nutrients -- 3.3. Water Transport Is Regulated by Symbiotic Partners -- 3.4. Sugars and Lipids Are Delivered to the Fungal Partner -- 3.4.1. Plant Carbohydrates Are Feeding AM Fungi -- 3.4.2. Plant Lipids Are Needed to Establish and Maintain AM Symbiosis -- 3.5. Membrane Transport Is Needed for Early Signalling to Establish Symbiosis -- 4. First Steps in the Study of Plant Nutrition in Orchid Mycorrhizae -- 5. Concluding Remarks and Perspectives -- Acknowledgements -- References -- Back Cover.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5573804 1 Available
Total holds: 0

Front Cover -- Membrane Transport in Plants -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: The ABC of ABC Transporters -- 1. Structural and Enzymatic Properties -- 2. Substrates and Functions -- 2.1. Hormone Transport -- 2.2. Response to Biotic Stresses -- 2.3. Surface Structures -- 2.4. Detoxification -- 2.5. Additional Functions -- 3. Open Questions -- References -- Chapter Two: Plant Aquaporins -- 1. Introduction -- 2. Plant Aquaporin Diversity -- 2.1. Evolution and Diversity of Plant Aquaporins -- 2.2. Cellular and Subcellular Localisation -- 2.2.1. Plant AQPs Exhibit Membrane Specialisation -- 2.2.2. Increasing Evidence of Finite Subcellular Localisation -- 2.3. Specialised Substrate Specificities -- 2.3.1. Water -- 2.3.2. Hydrogen Peroxide -- 2.3.3. Ammonia and Urea -- 2.3.4. Metalloids -- 2.3.5. Gases -- 2.3.6. Ions -- 3. Molecular Function and Regulation -- 3.1. Structural Conformation and Specificity Determinants -- 3.1.1. A Conserved Overall Structural Conformation -- 3.1.2. Selectivity Filters -- 3.2. Various Levels of Regulation -- 3.2.1. Cellular Trafficking and Aquaporin Interactions -- 3.2.2. Gating -- 3.2.3. Cotranslational and Posttranslational Modification -- 3.2.4. Importance of the Lipidic Environment -- 4. Conclusion and Perspectives -- References -- Further Reading -- Chapter Three: Heavy Metal Pumps in Plants: Structure, Function and Origin -- 1. Copper and Zinc Homeostasis in Eukaryotes -- 2. P-Type ATPases Are Primary Active Pumps Found in All Cells -- 3. P1B-Type ATPases in Plants -- 4. Mechanism of Pumping by P-Type ATPases -- 5. Structure and Mechanism of P1B ATPases -- 6. Function of the Terminal Metal Binding Domains -- 7. Classification of P1B ATPases -- 8. The Origin of P1B ATPases in Plants -- 9. The Origin of P1B-2 ATPases in Plants -- 10. Future Perspectives -- References -- Further Reading.

Chapter Four: Metal Transport in the Developing Plant Seed -- 1. General Principles in Plant Metal Homeostasis -- 2. Arabidopsis Seed Metal Homeostasis -- 3. Post-Phloem Metal Transport -- 4. From Seed Coat to the Endosperm, and Further to the Embryo -- 5. Metal Transport Within the Embryo -- 6. Do Tonoplast Transporters Control Metal Acquisition in the Embryo? -- Acknowledgements -- References -- Chapter Five: Transporters and Mechanisms of Hormone Transport in Arabidopsis -- 1. Introduction -- 2. Auxin -- 2.1. PINs as Polar Auxin Efflux Transporters -- 2.2. ABCBs as Non-Polar Auxin Efflux Transporters -- 2.3. AUX/LAX as Auxin Influx Transporters -- 2.4. Transporters Controlling Intracellular Auxin Homeostasis -- 2.5. Auxin Transporters Mediating Plant Adaptive Responses -- 3. Cytokinins -- 4. Abscisic Acid (ABA) -- 5. Gibberellins (GA) -- 6. Jasmonates -- 7. Ethylene -- 8. Brassinosteroids -- 9. Strigolactones -- 10. Conclusion -- Acknowledgements -- References -- Further Reading -- Chapter Six: Root Nitrate Uptake -- 1. Introduction -- 2. Characterization of NO3 Transport Systems -- 2.1. Root NO3 Uptake -- 2.2. Root NO3 Transporters -- 3. Regulation of Root NO3 Acquisition -- 3.1. Regulation of Root NO3 Transporters -- 3.2. Regulation of Root Development -- 3.3. Molecular Elements -- 3.3.1. Common Regulatory Elements for Root NO3- Transporters and Root Development -- 3.3.2. Regulatory Elements Specific for Root NO3- Transporters or Root Development -- 4. Nitrate Transporter-Based Strategies for Improving NUE in Crops -- 5. Conclusion -- References -- Chapter Seven: The Regulation of Ion Channels and Transporters in the Guard Cell -- 1. Introduction -- 2. Proton Pumps -- 2.1. Plasma Membrane H-ATPases -- 2.2. Vacuolar V-Type ATPases and Pyrophosphatases -- 3. K Channels and Transporters -- 3.1. Plasma Membrane K Channels.

3.2. Vacuolar K Transport -- 4. Anion Transport -- 4.1. Plasma Membrane Anion Channels -- 4.2. Vacuolar Anion Transport During Stomatal Movement -- 5. Ca Transporters -- 5.1. Plasma Membrane Ca Transporters -- 5.2. Vacuolar Membrane Ca Transporters -- 6. Summary -- Acknowledgement -- References -- Chapter Eight: The Pollen Plasma Membrane Permeome Converts Transmembrane Ion Transport Into Speed -- 1. Introduction -- 2. The Pollen Permeome-Ion Transporter Classes Expressed in Pollen -- 2.1. The Pollen Plasma Membrane Permeome -- 2.2. Ion Transport -- 2.2.1. Primary Active Transport and the PM Proton Pump -- 2.2.2. K Transport -- 2.2.3. Ca Transport -- 2.2.4. Anion Transport -- 2.3. Metabolite Transport -- 2.3.1. Sugar Transport -- 2.3.2. Amino Acid/Peptide Transport -- 2.3.3. Boron Transport -- 2.4. Heavy Metal Ion Transport -- 3. Concerted Action of Ion Transport Leads to Spatial Self-organization and Drives Tube Growth -- 3.1. Examples of Heterogeneous Distribution in the Plasma Membrane -- 3.2. Pattern Formation by Electrophoretic Mobility of Membrane Proteins -- 4. Conclusion -- Acknowledgements -- References -- Chapter Nine: Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance -- 1. Introduction -- 2. Essentiality of Xylem Ion Loading for Abiotic Stress Tolerance -- 3. The Molecular Identity of the Key Transport Systems Mediating Xylem Ion Loading -- 3.1. Sodium -- 3.1.1. SOS1 -- 3.1.2. HKT -- 3.1.3. NSCC -- 3.1.4. CNGC -- 3.1.5. GLR -- 3.1.6. Aquaporins -- 3.1.7. CCC -- 3.2. Chloride -- 3.3. Potassium -- 4. Stress-Induced Regulation of Xylem Ion Loading and Its Implications -- 4.1. Sodium -- 4.1.1. Transcriptional Changes -- 4.1.2. Post-translational Regulation and Signalling -- 4.2. Chloride -- 4.2.1. Transcriptional Changes -- 4.2.2. Post-translational Regulation and Signalling -- 4.3. Potassium.

4.3.1. Transcriptional Changes -- 4.3.2. Post-translational Regulation and Signalling Pathways -- 5. Implications for Plant Breeding -- Acknowledgements -- References -- Further Reading -- Chapter Ten: The Role of Plant Transporters in Mycorrhizal Symbioses -- 1. Introduction -- 2. Ectomycorrhizal Symbiosis Requires Tightly Regulated Plant Membrane Transport -- 2.1. Plant Root�A�s Uptake of Mineral Nutrients and Water Transferred From Symbiotic Fungi -- 2.1.1. Plant Phosphate Nutrition -- 2.1.2. Ectomycorrhizal Contribution to Nitrogen Nutrition -- 2.1.3. Potassium -- 2.1.4. Ectomycorrhizal Fungi Modify Root Water Transport in Plants -- 2.2. Delivering Carbon Food for the Fungal Partner -- 2.3. Communication Between Symbiotic Partners -- 3. Arbuscular Mycorrhizal Fungi Control Plant Ion Channels and Transporters -- 3.1. Plant Phosphate Transporters Are Key Elements for Symbiotic Functioning -- 3.2. Root Mineral Nutrient Transport Adapts to Mycorrhizal Interaction -- 3.2.1. Nitrogen Acquisition by the Plant in Arbuscular Mycorrhizae -- 3.2.2. Potassium Transport in Arbuscular Mycorrhizae -- 3.2.3. Transport of Metal Nutrients -- 3.3. Water Transport Is Regulated by Symbiotic Partners -- 3.4. Sugars and Lipids Are Delivered to the Fungal Partner -- 3.4.1. Plant Carbohydrates Are Feeding AM Fungi -- 3.4.2. Plant Lipids Are Needed to Establish and Maintain AM Symbiosis -- 3.5. Membrane Transport Is Needed for Early Signalling to Establish Symbiosis -- 4. First Steps in the Study of Plant Nutrition in Orchid Mycorrhizae -- 5. Concluding Remarks and Perspectives -- Acknowledgements -- References -- Back Cover.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.