IUKL Library
Normal view MARC view ISBD view

Surface and Interface Chemistry of Clay Minerals.

By: Schoonheydt, Robert.
Contributor(s): Johnston, Cliff T | Bergaya, Fa�iza.
Material type: materialTypeLabelBookSeries: Issn Ser: Publisher: San Diego : Elsevier, 2018Copyright date: �2018Description: 1 online resource (428 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780081024331.Subject(s): Clay | Interfaces (Physical sciences)Genre/Form: Electronic books.DDC classification: 549.6 Online resources: Click to View
Contents:
Front Cover -- Surface and Interface Chemistry of Clay Minerals -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Acknowledgements -- Chapter 1: Clay minerals and their surfaces -- 1.1. TO or 1:1 and TOT or 2:1 clay minerals -- 1.2. Structural considerations -- 1.3. Isomorphous substitution -- 1.4. Consequences of isomorphous substitution -- 1.4.1. Cation exchange -- 1.4.2. Cation exchange capacity -- 1.4.3. Intercalation and swelling -- 1.5. Surfaces, surface areas, and surface sites -- 1.6. Surface atoms -- 1.7. Molecule-molecule and molecule-surface interactions -- 1.7.1. Molecule-molecule interactions -- 1.7.1.1. Ion-ion interactions -- 1.7.1.2. Dipole-dipole interactions -- 1.7.1.3. Charge-nonpolar interaction -- 1.7.1.4. Dipolar-nonpolar interaction -- 1.7.1.5. Nonpolar-nonpolar interactions -- 1.7.1.6. H-bonding: X-H-----Y -- 1.7.2. Molecule-surface and surface-surface interactions -- References -- Further reading -- Chapter 2: Determination of surface areas and textural properties of clay minerals -- 2.1. Introduction -- 2.2. Nonswelling and nonmicroporous clay minerals -- 2.3. Microporous clay minerals -- 2.4. Swelling clay minerals -- 2.4.1. The dry state -- 2.4.1.1. Gas adsorption techniques using `classical adsorbates -- 2.4.1.2. Adsorption techniques using polar adsorbates -- 2.4.2. Swelling clay minerals dispersions -- 2.5. Concluding remarks -- References -- Chapter 3: Quantum-chemical modelling of clay mineral surfaces and clay mineral-surface-adsorbate interactions -- 3.1. Quantum mechanical description of interatomic interactions -- 3.1.1. Hartree-Fock method -- 3.1.2. Density functional theory -- 3.1.3. Dispersion correction -- 3.1.4. Basis set -- 3.1.5. Effective core potentials -- 3.1.6. System size and boundary conditions -- 3.1.7. Structural optimisation and molecular dynamics simulations.
3.1.8. Ab initio spectroscopy -- 3.2. Simulations of clay minerals structure -- 3.2.1. Structure of TO/TOT layer and isomorphous substitutions -- 3.2.2. Structure of hydroxyl layer in 1:1 clay minerals -- 3.2.3. Structure of the interlayer and basal plane in 2:1 clay minerals -- 3.3. Elastic properties of clay minerals -- 3.4. Redox processes -- 3.5. Interaction of clay minerals with organic compounds -- 3.5.1. Natural organic matter and environmental engineering -- 3.5.2. Organic contaminants -- 3.5.3. Pillared organo-clay nanocomposites -- 3.5.4. Interaction with petroleum molecules -- 3.5.5. Adsorption of biomolecules -- 3.6. Acid-base properties of edge surfaces and cation complexation -- 3.6.1. Edge surface structures and surface pKa -- 3.6.2. Metal complexation at edge sites -- 3.7. Outlook -- References -- Chapter 4: Clay mineral-water interactions -- 4.1. Introduction -- 4.2. Water interactions with `neutral clay mineral surfaces -- 4.2.1. Talc and pyrophyllite -- 4.2.2. Kaolin group mineral -- 4.2.2.1.1. Kaolinite -- 4.2.2.1.2. Halloysite -- 4.3. Water interactions with `charged clay mineral surfaces (ion-dipole) -- 4.3.1. Smectites -- 4.4. Molecular probe and reporter group studies of smectite-water interactions -- 4.4.1. Vibrational studies of smectite-water interactions -- 4.4.2. NMR and EPR studies of smectite-water interactions -- 4.4.3. Inelastic and quasielastic neutron scattering of smectite-water interactions -- 4.4.4. Dielectric relaxation spectroscopy -- 4.5. Probing the hydrophobic/hydrophilic character of clay mineral surfaces -- 4.6. Conclusions -- References -- Chapter 5: Adsorption of heavy metals including radionuclides -- 5.1. Clay mineral adsorption mechanisms and modelling -- 5.1.1. Permanent charge: Cation exchange -- 5.1.2. Variable charge: Amphoteric edge sites -- 5.1.2.1. Acid-base reactions.
5.1.2.2. Surface complexation of cations on clay minerals -- 5.1.3. The 2 site protolysis nonelectrostatic surface complexation and cation exchange model -- 5.2. Adsorption of heavy metals and radionuclides on 2:1 clay minerals -- 5.2.1. Adsorption by cation exchange -- 5.2.1.1. Heavy metals and radionuclides -- 5.2.1.2. Rubidium, cesium and thallium -- 5.2.2. Adsorption by surface complexation -- 5.2.2.1. Cobalt, nickel and zinc -- 5.2.2.2. Tin and lead -- 5.2.3. Adsorption of radionuclides -- 5.2.3.1. Europium -- 5.2.3.2. Americium and curium -- 5.2.3.3. Thorium -- 5.2.3.4. Protactinium -- 5.2.3.5. Neptunium -- 5.2.3.6. Uranium -- 5.2.4. Influence of carbonate on the adsorption of Eu, Np, and U -- 5.3. Adsorption of iron on Mt -- 5.3.1. Fe2+ adsorption on Mt with no or low structural iron -- 5.3.1.1. Experimental adsorption data and modelling -- 5.3.1.2. Spectroscopic studies -- 5.3.2. Fe2+ adsorption on Mt with moderate structural iron -- 5.3.3. Influence of adsorbed iron on the uptake of redox-sensitive heavy metals -- References -- Chapter 6: From transition metal ion complexes to chiral clay minerals -- 6.1. Introduction -- 6.2. Stereochemistry of a clay mineral surface -- 6.3. Chirality recognition by a clay mineral surface modified with metal complexes -- 6.3.1. Clay mineral column chromatography for optical resolution -- 6.3.2. Chiral phosphorescent probes on a clay mineral surface -- 6.3.3. Asymmetric catalysis on a clay mineral surface -- 6.4. Solid-state VCD towards molecular recognition on a clay mineral surface -- 6.5. Summary and future development -- Appendix. Basic strategy of applying vibrational circular dichroism (VCD) spectroscopy to solid or film samples -- References -- Chapter 7: Organic pollutant adsorption on clay minerals -- 7.1. Pollutants? Definitions and scope of the chapter -- 7.2. Classification of pollutants.
7.2.1. Classification by origin -- 7.2.2. Classification by chemical nature -- 7.3. Pollutant adsorption mechanisms on clay minerals: An overview -- 7.3.1. Electrostatic interaction and ion exchange -- 7.3.2. Covalent bonds and coordinative bonding -- 7.3.3. Hydrogen bonds, van der Waals interactions, and hydrophobic effects -- 7.3.4. Putting it all together: The importance of water -- 7.4. Tools of the trade: Experimental studies of organic pollutants adsorption -- 7.4.1. Macroscopic characterisation -- 7.4.1.1. Isotherms, thermodynamics, and kinetics -- 7.4.1.2. Thermal analysis -- 7.4.1.3. Electrophoretic mobility -- 7.4.2. Molecular level characterisation -- 7.4.2.1. X-ray diffraction (XRD) -- 7.4.2.2. Transmission electron microscopy (TEM) -- 7.4.2.3. UV-visible absorption and fluorescence -- 7.4.2.4. Vibrational spectroscopy -- 7.4.2.5. X-ray photoelectron spectroscopy (XPS) -- 7.4.2.6. Solid-state nuclear magnetic resonance (NMR) -- 7.4.3. Molecular modelling -- 7.5. Adsorption: A gateway to reactivity -- 7.6. Conclusion -- Appendix: A list of pollutant structures -- References -- Chapter 8: Protein adsorption on clay minerals -- 8.1. Introduction -- 8.2. General considerations on protein adsorption -- 8.2.1. Binding force/binding site -- 8.2.2. Soft and hard proteins -- 8.3. Methodology to study protein adsorption -- 8.3.1. Interfacial concentration -- 8.3.1.1. Adsorption isotherms -- 8.3.1.2. Adsorption kinetics -- 8.3.2. Protein location -- 8.3.2.1. Transmission electronic microscopy -- 8.3.2.2. X-ray diffraction -- 8.3.3. Structural modification of proteins -- 8.3.3.1. Fourier transformed infrared -- 8.3.3.2. Fluorescence -- 8.3.3.3. Nuclear magnetic resonance -- 8.4. Parameters that influence protein adsorption -- 8.4.1. Clay mineral structure -- 8.4.2. Interlayer cation -- 8.4.3. pH of the adsorption solution.
8.5. An overview of the adsorption of different proteins -- 8.5.1. Bovine serum albumin -- 8.5.2. Enzymes -- 8.5.3. Structural proteins: collagen/gelatin/fibrinogen -- 8.5.4. Toxins -- 8.6. Conclusion -- References -- Chapter 9: Clay mineral catalysts -- 9.1. Introduction -- 9.2. Structural formula of some 2:1 clay minerals -- 9.2.1. Smectite group of clay minerals -- 9.2.2. Structure of Mt -- 9.3. Properties of Mt -- 9.3.1. Isomorphous substitution and CEC -- 9.3.2. Acidity of the clay mineral -- 9.3.3. Metal ions and metal complexes exchanged Mt -- 9.3.4. Acid-modified nanoporous Mt -- 9.3.5. Acid-modified Mt as support for metal nanoparticles -- 9.4. Modified Mt for solid acid catalysis -- 9.4.1. Friedel-Crafts alkylations and acylations -- 9.4.2. Other substitutions reactions -- 9.4.3. Cycloaddition reactions -- 9.4.4. Ring-opening and condensation reactions -- 9.4.5. Heck and other reactions -- 9.4.6. Esterification reactions -- 9.4.7. Acid-activated nanoporous Mt and pillared clay mineral catalysts -- 9.5. Nanoporous Mt supported metal nanoparticles catalysts -- 9.6. Conclusion -- References -- Chapter 10: From polymers to clay polymer nanocomposites -- 10.1. Introduction -- 10.2. Clay minerals used in clay mineral polymer nanocomposites -- 10.3. Structures and surface properties of clay minerals -- 10.4. CPN obtained by cation exchange of a hydrophilic polymer with long alkyl chain/or a cationic monomer -- 10.5. CPN obtained by grafting of organophilic polymers with a hydrophilic group -- 10.6. CPN obtained by melt intercalation of a pristine clay mineral with hydrophilic or organophilic polymer and surfactant -- 10.7. Other strategies of CPN synthesis with organophilic polymers -- 10.7.1. Hydrophobization of clay minerals by exchange with cationic species with long alkyl chain or with monomers follow ...
10.7.2. Hydrophobization by covalent grafting of a compatibilizer on basal surfaces and/or at the edges of clay minerals.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5579891 1 Available
Total holds: 0

Front Cover -- Surface and Interface Chemistry of Clay Minerals -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Acknowledgements -- Chapter 1: Clay minerals and their surfaces -- 1.1. TO or 1:1 and TOT or 2:1 clay minerals -- 1.2. Structural considerations -- 1.3. Isomorphous substitution -- 1.4. Consequences of isomorphous substitution -- 1.4.1. Cation exchange -- 1.4.2. Cation exchange capacity -- 1.4.3. Intercalation and swelling -- 1.5. Surfaces, surface areas, and surface sites -- 1.6. Surface atoms -- 1.7. Molecule-molecule and molecule-surface interactions -- 1.7.1. Molecule-molecule interactions -- 1.7.1.1. Ion-ion interactions -- 1.7.1.2. Dipole-dipole interactions -- 1.7.1.3. Charge-nonpolar interaction -- 1.7.1.4. Dipolar-nonpolar interaction -- 1.7.1.5. Nonpolar-nonpolar interactions -- 1.7.1.6. H-bonding: X-H-----Y -- 1.7.2. Molecule-surface and surface-surface interactions -- References -- Further reading -- Chapter 2: Determination of surface areas and textural properties of clay minerals -- 2.1. Introduction -- 2.2. Nonswelling and nonmicroporous clay minerals -- 2.3. Microporous clay minerals -- 2.4. Swelling clay minerals -- 2.4.1. The dry state -- 2.4.1.1. Gas adsorption techniques using `classical adsorbates -- 2.4.1.2. Adsorption techniques using polar adsorbates -- 2.4.2. Swelling clay minerals dispersions -- 2.5. Concluding remarks -- References -- Chapter 3: Quantum-chemical modelling of clay mineral surfaces and clay mineral-surface-adsorbate interactions -- 3.1. Quantum mechanical description of interatomic interactions -- 3.1.1. Hartree-Fock method -- 3.1.2. Density functional theory -- 3.1.3. Dispersion correction -- 3.1.4. Basis set -- 3.1.5. Effective core potentials -- 3.1.6. System size and boundary conditions -- 3.1.7. Structural optimisation and molecular dynamics simulations.

3.1.8. Ab initio spectroscopy -- 3.2. Simulations of clay minerals structure -- 3.2.1. Structure of TO/TOT layer and isomorphous substitutions -- 3.2.2. Structure of hydroxyl layer in 1:1 clay minerals -- 3.2.3. Structure of the interlayer and basal plane in 2:1 clay minerals -- 3.3. Elastic properties of clay minerals -- 3.4. Redox processes -- 3.5. Interaction of clay minerals with organic compounds -- 3.5.1. Natural organic matter and environmental engineering -- 3.5.2. Organic contaminants -- 3.5.3. Pillared organo-clay nanocomposites -- 3.5.4. Interaction with petroleum molecules -- 3.5.5. Adsorption of biomolecules -- 3.6. Acid-base properties of edge surfaces and cation complexation -- 3.6.1. Edge surface structures and surface pKa -- 3.6.2. Metal complexation at edge sites -- 3.7. Outlook -- References -- Chapter 4: Clay mineral-water interactions -- 4.1. Introduction -- 4.2. Water interactions with `neutral clay mineral surfaces -- 4.2.1. Talc and pyrophyllite -- 4.2.2. Kaolin group mineral -- 4.2.2.1.1. Kaolinite -- 4.2.2.1.2. Halloysite -- 4.3. Water interactions with `charged clay mineral surfaces (ion-dipole) -- 4.3.1. Smectites -- 4.4. Molecular probe and reporter group studies of smectite-water interactions -- 4.4.1. Vibrational studies of smectite-water interactions -- 4.4.2. NMR and EPR studies of smectite-water interactions -- 4.4.3. Inelastic and quasielastic neutron scattering of smectite-water interactions -- 4.4.4. Dielectric relaxation spectroscopy -- 4.5. Probing the hydrophobic/hydrophilic character of clay mineral surfaces -- 4.6. Conclusions -- References -- Chapter 5: Adsorption of heavy metals including radionuclides -- 5.1. Clay mineral adsorption mechanisms and modelling -- 5.1.1. Permanent charge: Cation exchange -- 5.1.2. Variable charge: Amphoteric edge sites -- 5.1.2.1. Acid-base reactions.

5.1.2.2. Surface complexation of cations on clay minerals -- 5.1.3. The 2 site protolysis nonelectrostatic surface complexation and cation exchange model -- 5.2. Adsorption of heavy metals and radionuclides on 2:1 clay minerals -- 5.2.1. Adsorption by cation exchange -- 5.2.1.1. Heavy metals and radionuclides -- 5.2.1.2. Rubidium, cesium and thallium -- 5.2.2. Adsorption by surface complexation -- 5.2.2.1. Cobalt, nickel and zinc -- 5.2.2.2. Tin and lead -- 5.2.3. Adsorption of radionuclides -- 5.2.3.1. Europium -- 5.2.3.2. Americium and curium -- 5.2.3.3. Thorium -- 5.2.3.4. Protactinium -- 5.2.3.5. Neptunium -- 5.2.3.6. Uranium -- 5.2.4. Influence of carbonate on the adsorption of Eu, Np, and U -- 5.3. Adsorption of iron on Mt -- 5.3.1. Fe2+ adsorption on Mt with no or low structural iron -- 5.3.1.1. Experimental adsorption data and modelling -- 5.3.1.2. Spectroscopic studies -- 5.3.2. Fe2+ adsorption on Mt with moderate structural iron -- 5.3.3. Influence of adsorbed iron on the uptake of redox-sensitive heavy metals -- References -- Chapter 6: From transition metal ion complexes to chiral clay minerals -- 6.1. Introduction -- 6.2. Stereochemistry of a clay mineral surface -- 6.3. Chirality recognition by a clay mineral surface modified with metal complexes -- 6.3.1. Clay mineral column chromatography for optical resolution -- 6.3.2. Chiral phosphorescent probes on a clay mineral surface -- 6.3.3. Asymmetric catalysis on a clay mineral surface -- 6.4. Solid-state VCD towards molecular recognition on a clay mineral surface -- 6.5. Summary and future development -- Appendix. Basic strategy of applying vibrational circular dichroism (VCD) spectroscopy to solid or film samples -- References -- Chapter 7: Organic pollutant adsorption on clay minerals -- 7.1. Pollutants? Definitions and scope of the chapter -- 7.2. Classification of pollutants.

7.2.1. Classification by origin -- 7.2.2. Classification by chemical nature -- 7.3. Pollutant adsorption mechanisms on clay minerals: An overview -- 7.3.1. Electrostatic interaction and ion exchange -- 7.3.2. Covalent bonds and coordinative bonding -- 7.3.3. Hydrogen bonds, van der Waals interactions, and hydrophobic effects -- 7.3.4. Putting it all together: The importance of water -- 7.4. Tools of the trade: Experimental studies of organic pollutants adsorption -- 7.4.1. Macroscopic characterisation -- 7.4.1.1. Isotherms, thermodynamics, and kinetics -- 7.4.1.2. Thermal analysis -- 7.4.1.3. Electrophoretic mobility -- 7.4.2. Molecular level characterisation -- 7.4.2.1. X-ray diffraction (XRD) -- 7.4.2.2. Transmission electron microscopy (TEM) -- 7.4.2.3. UV-visible absorption and fluorescence -- 7.4.2.4. Vibrational spectroscopy -- 7.4.2.5. X-ray photoelectron spectroscopy (XPS) -- 7.4.2.6. Solid-state nuclear magnetic resonance (NMR) -- 7.4.3. Molecular modelling -- 7.5. Adsorption: A gateway to reactivity -- 7.6. Conclusion -- Appendix: A list of pollutant structures -- References -- Chapter 8: Protein adsorption on clay minerals -- 8.1. Introduction -- 8.2. General considerations on protein adsorption -- 8.2.1. Binding force/binding site -- 8.2.2. Soft and hard proteins -- 8.3. Methodology to study protein adsorption -- 8.3.1. Interfacial concentration -- 8.3.1.1. Adsorption isotherms -- 8.3.1.2. Adsorption kinetics -- 8.3.2. Protein location -- 8.3.2.1. Transmission electronic microscopy -- 8.3.2.2. X-ray diffraction -- 8.3.3. Structural modification of proteins -- 8.3.3.1. Fourier transformed infrared -- 8.3.3.2. Fluorescence -- 8.3.3.3. Nuclear magnetic resonance -- 8.4. Parameters that influence protein adsorption -- 8.4.1. Clay mineral structure -- 8.4.2. Interlayer cation -- 8.4.3. pH of the adsorption solution.

8.5. An overview of the adsorption of different proteins -- 8.5.1. Bovine serum albumin -- 8.5.2. Enzymes -- 8.5.3. Structural proteins: collagen/gelatin/fibrinogen -- 8.5.4. Toxins -- 8.6. Conclusion -- References -- Chapter 9: Clay mineral catalysts -- 9.1. Introduction -- 9.2. Structural formula of some 2:1 clay minerals -- 9.2.1. Smectite group of clay minerals -- 9.2.2. Structure of Mt -- 9.3. Properties of Mt -- 9.3.1. Isomorphous substitution and CEC -- 9.3.2. Acidity of the clay mineral -- 9.3.3. Metal ions and metal complexes exchanged Mt -- 9.3.4. Acid-modified nanoporous Mt -- 9.3.5. Acid-modified Mt as support for metal nanoparticles -- 9.4. Modified Mt for solid acid catalysis -- 9.4.1. Friedel-Crafts alkylations and acylations -- 9.4.2. Other substitutions reactions -- 9.4.3. Cycloaddition reactions -- 9.4.4. Ring-opening and condensation reactions -- 9.4.5. Heck and other reactions -- 9.4.6. Esterification reactions -- 9.4.7. Acid-activated nanoporous Mt and pillared clay mineral catalysts -- 9.5. Nanoporous Mt supported metal nanoparticles catalysts -- 9.6. Conclusion -- References -- Chapter 10: From polymers to clay polymer nanocomposites -- 10.1. Introduction -- 10.2. Clay minerals used in clay mineral polymer nanocomposites -- 10.3. Structures and surface properties of clay minerals -- 10.4. CPN obtained by cation exchange of a hydrophilic polymer with long alkyl chain/or a cationic monomer -- 10.5. CPN obtained by grafting of organophilic polymers with a hydrophilic group -- 10.6. CPN obtained by melt intercalation of a pristine clay mineral with hydrophilic or organophilic polymer and surfactant -- 10.7. Other strategies of CPN synthesis with organophilic polymers -- 10.7.1. Hydrophobization of clay minerals by exchange with cationic species with long alkyl chain or with monomers follow ...

10.7.2. Hydrophobization by covalent grafting of a compatibilizer on basal surfaces and/or at the edges of clay minerals.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.