IUKL Library
Normal view MARC view ISBD view

Biochar from Biomass and Waste : Fundamentals and Applications.

By: Ok, Yong Sik.
Contributor(s): Tsang, Daniel C. W | Bolan, Nanthi | Novak, Jeffrey M.
Material type: materialTypeLabelBookPublisher: San Diego : Elsevier, 2018Copyright date: �2019Description: 1 online resource (463 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780128117309.Subject(s): Biochar | Biomass | Biomass energyGenre/Form: Electronic books.DDC classification: 333.9539 Online resources: Click to View
Contents:
Front Cover -- Biochar from Biomass and Waste -- Copyright Page -- Contents -- List of Contributors -- I. Biochar Production -- 1 Production and Formation of Biochar -- 1.1 Introduction -- 1.2 Raw Materials of Biochar -- 1.3 Processes for Biochar Production -- 1.3.1 Pyrolysis -- 1.3.2 Hydrothermal Carbonization -- 1.4 Mechanism of the Formation of Biochar -- 1.4.1 Formation of Biochar Via Pyrolysis -- 1.4.2 Formation of Biochar Via Hydrothermal Carbonization -- 1.5 Conclusions -- References -- II. Biochar Characterization -- 2 Physical Characteristics of Biochars and Their Effects on Soil Physical Properties -- 2.1 Introduction -- 2.2 Biochar Structure and Microstructure -- 2.2.1 Surface Properties of Biochars -- 2.2.2 Pore Distribution and Surface Area of Biochars -- 2.3 Soil Physical Properties of Biochar-Amended Soils -- 2.3.1 Effects of Biochars on CO2 Emission -- 2.3.2 Nutrients Retention of Biochar-Amended Soils -- 2.4 Future Research -- References -- 3 Elemental and Spectroscopic Characterization of Low-Temperature (350�C) Lignocellulosic- and Manure-Based Designer Biocha... -- Disclaimer -- 3.1 Introduction -- 3.2 Biochar Definition -- 3.3 Biochar Feedstocks -- 3.4 Biochar Products -- 3.5 General Characteristics of Biochars -- 3.6 Low-Temperature Pyrolyzed Designer Biochars -- 3.6.1 Ultimate, Proximate, and Inorganic Composition -- 3.6.2 Spectroscopic Characteristics -- 3.6.2.1 SEM Images -- 3.6.2.2 Structural and Functional Group Properties of Biochars Revealed With 13C NMR and FTIR Spectroscopy -- 3.7 Comparison of Low versus High Temperature-Produced Biochars as a Soil Amendment -- 3.8 Conclusions -- References -- Further Reading -- 4 Modeling the Surface Chemistry of Biochars -- 4.1 Introduction -- 4.2 Surface Complexation Modeling -- 4.3 Spectroscopic and Calorimetric Approaches -- 4.4 State of Biochar Surface Chemistry Modeling.
4.5 Outlook -- References -- III. Applications -- 5 Biochar for Mine-land Reclamation -- Disclaimer -- 5.1 Introduction -- 5.1.1 Cadmium -- 5.1.2 Copper -- 5.1.3 Lead -- 5.1.4 Zinc -- 5.1.5 Recent Case Study-Biochar Use in Multielement-Contaminated Mine Waste -- 5.1.6 Recent Case Study-Biochar Use in Cd- and Zn-Contaminated Paddy Soil -- 5.1.7 Recent Case Study-Designing Biochar Production and Use for Mine-Spoil Remediation -- 5.2 Conclusions -- References -- Further Reading -- 6 Potential of Biochar for Managing Metal Contaminated Areas, in Synergy With Phytomanagement or Other Management Options -- 6.1 Introduction -- 6.2 Metals and Metalloids in Soil -- 6.3 Biochar as a Soil Amendment for Risk-Based Land Management -- 6.4 Properties of Biochar in Relation to Trace Element Sorption -- 6.5 Effects of Adding Biochar to Soil -- 6.6 Management Options -- 6.6.1 Biochar Amendment in Combination With Phytomanagement -- 6.6.2 Biochar to Reduce Uptake of Hazardous Elements to Vegetable Crops -- 6.7 Field Experience to Date -- 6.8 Conclusions -- References -- 7 Biochar and Its Composites for Metal(loid) Removal From Aqueous Solutions -- 7.1 Metal Sorption on Various Biochars -- 7.1.1 Effect of Biochar Characteristics -- 7.1.2 Optimization of Metal Sorption -- 7.1.3 Metal-Sorption Mechanisms -- 7.2 Biochar Modifications -- 7.2.1 Chemical Activation -- 7.2.2 Iron Modifications -- 7.2.2.1 Magnetic Impregnation -- 7.2.2.2 Nano Zero-Valent Iron Modification -- 7.2.3 Layered Double-Hydroxide Modification -- 7.2.3.1 Synthesis of LDH/Biochar Composites -- 7.2.3.2 Adsorption Properties of LDH/Biochar Composites -- 7.2.4 Manganese-Oxide Coating -- 7.3 Engineering Implications of Biochar and Its Modifications -- Acknowledgments -- References -- Further Reading -- 8 Biochar for Anionic Contaminants Removal From Water -- 8.1 Anionic Contaminants in Water/Wastewater.
8.2 Sorption Properties of Biochar -- 8.2.1 Anionic Nutrients in Water -- 8.2.1.1 Phosphate (PO43−) -- 8.2.1.2 Nitrate (NO3−) -- 8.2.2 Anionic Heavy Metals in Water -- 8.2.2.1 Hexavalent Chromium -- 8.2.2.2 Arsenic -- 8.2.3 Other Anionic Contaminants in Water -- 8.3 Biochar Sorption of Anionic Contaminants -- 8.3.1 Pore Filling -- 8.3.2 Hydrogen Bonding -- 8.3.3 Surface Complexation/Precipitation -- 8.3.4 Electrostatic Attraction -- 8.3.5 (Ss(B-(Ss(B Interaction -- 8.4 Factors Influencing the Sorption of Anionic Contaminants -- 8.4.1 Pyrolysis Temperature -- 8.4.2 pH of the Solution -- 8.4.3 Coexisting Ions -- 8.4.4 Temperature -- 8.5 Conclusions and Perspectives -- References -- 9 Biochar for Soil Water Conservation and Salinization Control in Arid Desert Regions -- 9.1 Arid Desert Ecosystem -- 9.2 Methods for Water Conservation and Salinization Control in Arid Desert Regions -- 9.3 Application of Biochar to Soils -- 9.3.1 Application of Biochar for Water Conservation in Arid Desert Regions -- 9.3.2 Application of Biochar for Soil Salinization Control in Arid Desert Regions -- 9.4 Other Advantages of Biochar Application in Arid Desert Regions -- 9.5 Conclusions -- References -- 10 Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation -- 10.1 Introduction -- 10.2 Common Adsorbent Materials -- 10.2.1 Silica -- 10.2.2 Zeolites -- 10.2.3 Activated Alumina -- 10.2.4 Activated Carbon -- 10.2.5 Polymeric Resins -- 10.3 Biochar as Adsorbent -- 10.3.1 Surface Area and Porosity -- 10.3.2 pH and Surface Charge -- 10.3.3 Functional Groups, Aromaticity, and Polarity -- 10.3.4 Mineral Components -- 10.4 Biochar for Adsorption of Organic Molecules -- 10.4.1 Adsorption of Antibiotics -- 10.4.2 Adsorption of Pesticides, Herbicides, and Fumigants -- 10.4.3 Adsorption of Color/Dyes -- 10.4.4 Adsorption of Polycyclic Aromatic Hydrocarbons.
10.4.5 Adsorption of Polychlorinated Biphenyls -- 10.4.5.1 Adsorption of Volatile Organic Compounds -- 10.5 Biochar for Adsorption of Inorganic Species -- 10.5.1 Adsorption of Heavy Metal Ions -- 10.5.1.1 Adsorption of Heavy Metal Ions From Water -- 10.5.1.2 Adsorption of Heavy Metals From Soil -- 10.5.2 Adsorption of Anions and Other Inorganic Pollutants -- 10.6 Modified Biochar as Adsorbent -- 10.6.1 Surface Functionalized Biochar as Adsorbent -- 10.6.1.1 Steam-Activated Biochar -- 10.6.1.2 Heat-Treated Biochar -- 10.6.1.3 Acid-Treated Biochar -- 10.6.1.4 Alkali-Treated Biochar -- 10.6.1.5 Biochar Modified With Nitrogen-Based Functional Groups -- 10.6.2 Biochar-Based Composite as Adsorbent -- 10.6.2.1 Nanometal Oxide/Hydroxide-Biochar Composites -- 10.6.2.2 Magnetic Biochar Composites as Adsorbent -- 10.6.2.3 Functional Nanoparticles-Coated Biochar -- 10.6.2.4 Impregnation of Functional Nanoparticles After Pyrolysis -- 10.7 Concluding Remarks and Future Perspectives -- References -- 11 Biochar for Sustainable Agriculture: Nutrient Dynamics, Soil Enzymes, and Crop Growth -- 11.1 Introduction -- 11.2 Evolution of Sustainable Agriculture -- 11.2.1 Malthusian Catastrophe and Green Revolution -- 11.2.2 Role of Biochar in Sustainable Agriculture -- 11.3 Influence of Biochar on Soil Nutrient Dynamics -- 11.3.1 Direct Nutrient Values of Biochar -- 11.3.2 Indirect Nutrient Values of Biochar -- 11.4 Influence of Biochar on Soil Enzymes -- 11.4.1 Influence of Biochar on Microorganism-Derived Soil Enzymes -- 11.4.2 Faunal Population Response to Biochar in Soil -- 11.4.3 Plant Root Response to Biochar in Soil -- 11.5 Effect of Biochar on Crop Growth -- 11.6 Conclusions -- References -- 12 Biochar Is a Potential Source of Silicon Fertilizer: An Overview -- 12.1 Introduction -- 12.2 Silicon -- 12.2.1 Forms of Silicon in Soil -- 12.2.2 Bioavailable Si in Soil.
12.2.3 Effect of Si on Plants -- 12.3 Biochar -- 12.3.1 Sources of Feedstock for Biochar -- 12.3.2 Characterization of Biochar -- 12.3.3 Benefits of Biochar in Agricultural Practices -- 12.4 Biochar Is a Potential Source of Bioavailable Si -- 12.5 Conclusion and Perspectives -- Acknowledgments -- References -- 13 Sludge-Derived Biochar and Its Application in Soil Fixation -- 13.1 Sewage Sludge Production and Disposal in China -- 13.2 Pyrolysis of Sewage Sludge and the Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.2.1 Pyrolysis of Sewage Sludge Under Various Conditions -- 13.2.2 Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.3 Adsorption of Contaminants in Sludge-Derived Biochars -- 13.3.1 Cationic Metals -- 13.3.2 Oxyanionic Metals -- 13.3.3 Organic Contaminants -- 13.4 Metal Stabilization in Soils by Sludge-Derived Biochars -- 13.5 Ageing of Sludge-Derived Biochars in the Environment -- 13.6 Conclusions -- References -- Further Reading -- 14 Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils -- 14.1 Introduction -- 14.2 Biochar as an Immobilizing Agent for Potentially Toxic Elements in Contaminated Soils -- 14.2.1 Reducing Mobility and Phytoavailability of Potentially Toxic Elements in Soils Using Biochar -- 14.2.2 Immobilization Mechanisms of Potentially Toxic Elements by Biochar -- 14.3 Biochar as a Mobilizing Agent for Potentially Toxic Elements in Contaminated Soils: Mobilization Mechanisms -- 14.4 Conclusions -- Acknowledgments -- References -- 15 Hydrothermal Carbonization for Hydrochar Production and Its Application -- 15.1 Introduction -- 15.2 Production of Hydrochar -- 15.2.1 Influence of Feedstock -- 15.2.2 Influence of Reaction Temperature -- 15.2.3 Influence of Retention Time -- 15.2.4 Influence of Catalyst -- 15.3 Properties of Hydrochar.
15.3.1 Heating Value.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5582328 1 Available
Total holds: 0

Front Cover -- Biochar from Biomass and Waste -- Copyright Page -- Contents -- List of Contributors -- I. Biochar Production -- 1 Production and Formation of Biochar -- 1.1 Introduction -- 1.2 Raw Materials of Biochar -- 1.3 Processes for Biochar Production -- 1.3.1 Pyrolysis -- 1.3.2 Hydrothermal Carbonization -- 1.4 Mechanism of the Formation of Biochar -- 1.4.1 Formation of Biochar Via Pyrolysis -- 1.4.2 Formation of Biochar Via Hydrothermal Carbonization -- 1.5 Conclusions -- References -- II. Biochar Characterization -- 2 Physical Characteristics of Biochars and Their Effects on Soil Physical Properties -- 2.1 Introduction -- 2.2 Biochar Structure and Microstructure -- 2.2.1 Surface Properties of Biochars -- 2.2.2 Pore Distribution and Surface Area of Biochars -- 2.3 Soil Physical Properties of Biochar-Amended Soils -- 2.3.1 Effects of Biochars on CO2 Emission -- 2.3.2 Nutrients Retention of Biochar-Amended Soils -- 2.4 Future Research -- References -- 3 Elemental and Spectroscopic Characterization of Low-Temperature (350�C) Lignocellulosic- and Manure-Based Designer Biocha... -- Disclaimer -- 3.1 Introduction -- 3.2 Biochar Definition -- 3.3 Biochar Feedstocks -- 3.4 Biochar Products -- 3.5 General Characteristics of Biochars -- 3.6 Low-Temperature Pyrolyzed Designer Biochars -- 3.6.1 Ultimate, Proximate, and Inorganic Composition -- 3.6.2 Spectroscopic Characteristics -- 3.6.2.1 SEM Images -- 3.6.2.2 Structural and Functional Group Properties of Biochars Revealed With 13C NMR and FTIR Spectroscopy -- 3.7 Comparison of Low versus High Temperature-Produced Biochars as a Soil Amendment -- 3.8 Conclusions -- References -- Further Reading -- 4 Modeling the Surface Chemistry of Biochars -- 4.1 Introduction -- 4.2 Surface Complexation Modeling -- 4.3 Spectroscopic and Calorimetric Approaches -- 4.4 State of Biochar Surface Chemistry Modeling.

4.5 Outlook -- References -- III. Applications -- 5 Biochar for Mine-land Reclamation -- Disclaimer -- 5.1 Introduction -- 5.1.1 Cadmium -- 5.1.2 Copper -- 5.1.3 Lead -- 5.1.4 Zinc -- 5.1.5 Recent Case Study-Biochar Use in Multielement-Contaminated Mine Waste -- 5.1.6 Recent Case Study-Biochar Use in Cd- and Zn-Contaminated Paddy Soil -- 5.1.7 Recent Case Study-Designing Biochar Production and Use for Mine-Spoil Remediation -- 5.2 Conclusions -- References -- Further Reading -- 6 Potential of Biochar for Managing Metal Contaminated Areas, in Synergy With Phytomanagement or Other Management Options -- 6.1 Introduction -- 6.2 Metals and Metalloids in Soil -- 6.3 Biochar as a Soil Amendment for Risk-Based Land Management -- 6.4 Properties of Biochar in Relation to Trace Element Sorption -- 6.5 Effects of Adding Biochar to Soil -- 6.6 Management Options -- 6.6.1 Biochar Amendment in Combination With Phytomanagement -- 6.6.2 Biochar to Reduce Uptake of Hazardous Elements to Vegetable Crops -- 6.7 Field Experience to Date -- 6.8 Conclusions -- References -- 7 Biochar and Its Composites for Metal(loid) Removal From Aqueous Solutions -- 7.1 Metal Sorption on Various Biochars -- 7.1.1 Effect of Biochar Characteristics -- 7.1.2 Optimization of Metal Sorption -- 7.1.3 Metal-Sorption Mechanisms -- 7.2 Biochar Modifications -- 7.2.1 Chemical Activation -- 7.2.2 Iron Modifications -- 7.2.2.1 Magnetic Impregnation -- 7.2.2.2 Nano Zero-Valent Iron Modification -- 7.2.3 Layered Double-Hydroxide Modification -- 7.2.3.1 Synthesis of LDH/Biochar Composites -- 7.2.3.2 Adsorption Properties of LDH/Biochar Composites -- 7.2.4 Manganese-Oxide Coating -- 7.3 Engineering Implications of Biochar and Its Modifications -- Acknowledgments -- References -- Further Reading -- 8 Biochar for Anionic Contaminants Removal From Water -- 8.1 Anionic Contaminants in Water/Wastewater.

8.2 Sorption Properties of Biochar -- 8.2.1 Anionic Nutrients in Water -- 8.2.1.1 Phosphate (PO43−) -- 8.2.1.2 Nitrate (NO3−) -- 8.2.2 Anionic Heavy Metals in Water -- 8.2.2.1 Hexavalent Chromium -- 8.2.2.2 Arsenic -- 8.2.3 Other Anionic Contaminants in Water -- 8.3 Biochar Sorption of Anionic Contaminants -- 8.3.1 Pore Filling -- 8.3.2 Hydrogen Bonding -- 8.3.3 Surface Complexation/Precipitation -- 8.3.4 Electrostatic Attraction -- 8.3.5 (Ss(B-(Ss(B Interaction -- 8.4 Factors Influencing the Sorption of Anionic Contaminants -- 8.4.1 Pyrolysis Temperature -- 8.4.2 pH of the Solution -- 8.4.3 Coexisting Ions -- 8.4.4 Temperature -- 8.5 Conclusions and Perspectives -- References -- 9 Biochar for Soil Water Conservation and Salinization Control in Arid Desert Regions -- 9.1 Arid Desert Ecosystem -- 9.2 Methods for Water Conservation and Salinization Control in Arid Desert Regions -- 9.3 Application of Biochar to Soils -- 9.3.1 Application of Biochar for Water Conservation in Arid Desert Regions -- 9.3.2 Application of Biochar for Soil Salinization Control in Arid Desert Regions -- 9.4 Other Advantages of Biochar Application in Arid Desert Regions -- 9.5 Conclusions -- References -- 10 Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation -- 10.1 Introduction -- 10.2 Common Adsorbent Materials -- 10.2.1 Silica -- 10.2.2 Zeolites -- 10.2.3 Activated Alumina -- 10.2.4 Activated Carbon -- 10.2.5 Polymeric Resins -- 10.3 Biochar as Adsorbent -- 10.3.1 Surface Area and Porosity -- 10.3.2 pH and Surface Charge -- 10.3.3 Functional Groups, Aromaticity, and Polarity -- 10.3.4 Mineral Components -- 10.4 Biochar for Adsorption of Organic Molecules -- 10.4.1 Adsorption of Antibiotics -- 10.4.2 Adsorption of Pesticides, Herbicides, and Fumigants -- 10.4.3 Adsorption of Color/Dyes -- 10.4.4 Adsorption of Polycyclic Aromatic Hydrocarbons.

10.4.5 Adsorption of Polychlorinated Biphenyls -- 10.4.5.1 Adsorption of Volatile Organic Compounds -- 10.5 Biochar for Adsorption of Inorganic Species -- 10.5.1 Adsorption of Heavy Metal Ions -- 10.5.1.1 Adsorption of Heavy Metal Ions From Water -- 10.5.1.2 Adsorption of Heavy Metals From Soil -- 10.5.2 Adsorption of Anions and Other Inorganic Pollutants -- 10.6 Modified Biochar as Adsorbent -- 10.6.1 Surface Functionalized Biochar as Adsorbent -- 10.6.1.1 Steam-Activated Biochar -- 10.6.1.2 Heat-Treated Biochar -- 10.6.1.3 Acid-Treated Biochar -- 10.6.1.4 Alkali-Treated Biochar -- 10.6.1.5 Biochar Modified With Nitrogen-Based Functional Groups -- 10.6.2 Biochar-Based Composite as Adsorbent -- 10.6.2.1 Nanometal Oxide/Hydroxide-Biochar Composites -- 10.6.2.2 Magnetic Biochar Composites as Adsorbent -- 10.6.2.3 Functional Nanoparticles-Coated Biochar -- 10.6.2.4 Impregnation of Functional Nanoparticles After Pyrolysis -- 10.7 Concluding Remarks and Future Perspectives -- References -- 11 Biochar for Sustainable Agriculture: Nutrient Dynamics, Soil Enzymes, and Crop Growth -- 11.1 Introduction -- 11.2 Evolution of Sustainable Agriculture -- 11.2.1 Malthusian Catastrophe and Green Revolution -- 11.2.2 Role of Biochar in Sustainable Agriculture -- 11.3 Influence of Biochar on Soil Nutrient Dynamics -- 11.3.1 Direct Nutrient Values of Biochar -- 11.3.2 Indirect Nutrient Values of Biochar -- 11.4 Influence of Biochar on Soil Enzymes -- 11.4.1 Influence of Biochar on Microorganism-Derived Soil Enzymes -- 11.4.2 Faunal Population Response to Biochar in Soil -- 11.4.3 Plant Root Response to Biochar in Soil -- 11.5 Effect of Biochar on Crop Growth -- 11.6 Conclusions -- References -- 12 Biochar Is a Potential Source of Silicon Fertilizer: An Overview -- 12.1 Introduction -- 12.2 Silicon -- 12.2.1 Forms of Silicon in Soil -- 12.2.2 Bioavailable Si in Soil.

12.2.3 Effect of Si on Plants -- 12.3 Biochar -- 12.3.1 Sources of Feedstock for Biochar -- 12.3.2 Characterization of Biochar -- 12.3.3 Benefits of Biochar in Agricultural Practices -- 12.4 Biochar Is a Potential Source of Bioavailable Si -- 12.5 Conclusion and Perspectives -- Acknowledgments -- References -- 13 Sludge-Derived Biochar and Its Application in Soil Fixation -- 13.1 Sewage Sludge Production and Disposal in China -- 13.2 Pyrolysis of Sewage Sludge and the Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.2.1 Pyrolysis of Sewage Sludge Under Various Conditions -- 13.2.2 Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.3 Adsorption of Contaminants in Sludge-Derived Biochars -- 13.3.1 Cationic Metals -- 13.3.2 Oxyanionic Metals -- 13.3.3 Organic Contaminants -- 13.4 Metal Stabilization in Soils by Sludge-Derived Biochars -- 13.5 Ageing of Sludge-Derived Biochars in the Environment -- 13.6 Conclusions -- References -- Further Reading -- 14 Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils -- 14.1 Introduction -- 14.2 Biochar as an Immobilizing Agent for Potentially Toxic Elements in Contaminated Soils -- 14.2.1 Reducing Mobility and Phytoavailability of Potentially Toxic Elements in Soils Using Biochar -- 14.2.2 Immobilization Mechanisms of Potentially Toxic Elements by Biochar -- 14.3 Biochar as a Mobilizing Agent for Potentially Toxic Elements in Contaminated Soils: Mobilization Mechanisms -- 14.4 Conclusions -- Acknowledgments -- References -- 15 Hydrothermal Carbonization for Hydrochar Production and Its Application -- 15.1 Introduction -- 15.2 Production of Hydrochar -- 15.2.1 Influence of Feedstock -- 15.2.2 Influence of Reaction Temperature -- 15.2.3 Influence of Retention Time -- 15.2.4 Influence of Catalyst -- 15.3 Properties of Hydrochar.

15.3.1 Heating Value.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.