IUKL Library
Normal view MARC view ISBD view

Ordinary Differential Equations.

By: Greenberg, Michael D.
Material type: materialTypeLabelBookSeries: New York Academy of Sciences Ser: Publisher: Newark : John Wiley & Sons, Incorporated, 2012Copyright date: �2012Description: 1 online resource (549 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9781118243381.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- 1 First-Order Differential Equations -- 1.1 Motivation And Overview -- 1.1.1 Introduction -- 1.1.2 Modeling -- 1.1.3 The order of a differential equation -- 1.1.4 Linear and nonlinear equations -- 1.1.5 Ourplan -- 1.1.6 Direction field -- 1.1.7 Computer software -- 1.2 Linear First-Order Equations -- 1.2.1 The simplest case -- 1.2.2 The homogeneous equation -- 1.2.3 Solving the full equation by the integrating factor method -- 1.2.4 Existence and uniqueness for the linear equation -- 1.3 Applications Of Linear First-Order Equations -- 1.3.1 Population dynamics -- exponential model -- 1.3.2 Radioactive decay -- carbon dating -- 1.3.3 Mixing problems -- a one-compartment model -- 1.3.4 The phase line, equilibrium points, and stability -- 1.3.5 Electrical circuits -- 1.4 Nonlinear First-Order Equations That Are Separable -- 1.5 Existence And Uniqueness -- 1.5.1 An existence and uniqueness theorem -- 1.5.2 Illustrating the theorem -- 1.5.3 Application to free fall -- physical significance of nonuniqueness -- 1.6 Applications Of Nonlinear First-Order Equations -- 1.6.1 The logistic model of population dynamics -- 1.6.2 Stability of equilibrium points and linearized stability analysis -- 1.7 Exact Equations And Equations That Can Be Made Exact -- 1.7.1 Exact differential equations -- 1.7.2 Making an equation exact -- integrating factors -- 1.8 Solution By Substitution -- 1.8.1 Bernoulli's equation -- 1.8.2 Homogeneous equations -- 1.9 Numerical Solution By Euler's Method -- 1.9.1 Euler's method -- 1.9.2 Convergence of Euler's method -- 1.9.3 Higher-order methods -- Chapter 1 Review -- 2 Higher-Order Linear Equations -- 2.1 Linear Differential Equations Of Second Order -- 2.1.1 Introduction -- 2.1.2 Operator notation and linear differential operators -- 2.1.3 Superposition principle.
2.2 Constant-Coefficient Equations -- 2.2.1 Constant coefficients -- 2.2.2 Seeking a general solution -- 2.2.3 Initial value problem -- 2.3 Complex Roots -- 2.3.1 Complex exponential function -- 2.3.2 Complex characteristic roots -- 2.4 Linear Independence -- Existence, Uniqueness, General Solution -- 2.4.1 Linear dependence and linear independence -- 2.4.2 Existence, uniqueness, and general solution -- 2.4.3 Abel's formula and Wronskian test for linear independence -- 2.4.4 Building a solution method on these results -- 2.5 Reduction Of Order -- 2.5.1 Deriving the formula -- 2.5.2 The method rather than the formula -- 2.5.3 About the method of reduction of order -- 2.6 Cauchy-Euler Equations -- 2.6.1 General solution -- 2.6.2 Repeated roots and reduction of order -- 2.6.3 Complex roots -- 2.7 The General Theory For Higher-Order Equations -- 2.7.1 Theorems for nth-order linear equations -- 2.7.2 Constant-coefficient equations -- 2.7.3 Cauchy-Euler equations -- 2.8 Nonhomogeneous Equations -- 2.8.1 General solution -- 2.8.2 The scaling and superposition of forcing functions -- 2.9 Particular Solution By Undetermined Coefficients -- 2.9.1 Undetermined coefficients -- 2.9.2 A special case -- the complex exponential method -- 2.10 Particular Solution By Variation Of Parameters -- 2.10.1 First-order equations -- 2.10.2 Second-order equations -- Chapter 2 Review -- 3 Applications Of Higher-Order Equations -- 3.1 Introduction -- 3.2 Linear Harmonic Oscillator -- Free Oscillation -- 3.2.1 Mass-spring oscillator -- 3.2.2 Undamped free oscillation -- 3.2.3 Pendulum -- 3.3 Free Oscillation With Damping -- 3.3.1 Underdamped -- 3.3.2 Critically damped -- 3.3.3 Overdamped -- 3.4 Forced Oscillation -- 3.4.1 Undamped, c = 0 -- 3.4.2 Damped, c &gt -- 0 -- 3.5 Steady-State Diffusion -- A Boundary Value Problem -- 3.5.1 Boundary value problems.
existence and uniqueness -- 3.5.2 Steady-state heat conduction in a rod -- 3.6 Introduction To The Eigenvalue Problem -- Column Buckling -- 3.6.1 An eigenvalue problem -- 3.6.2 Application to column buckling -- Chapter 3 Review -- 4 Systems Of Linear Differential Equations -- 4.1 Introduction, And Solution By Elimination -- 4.1.1 Introduction -- 4.1.2 Physical examples -- 4.1.3 Solutions, existence, and uniqueness -- 4.1.4 Solution by elimination -- 4.1.5 Auxiliary variables -- 4.2 Application To Coupled Oscillators -- 4.2.1 Coupled oscillators -- 4.2.2 Reduction to first-order system by auxiliary variables -- 4.2.3 The free vibration -- 4.2.4 The forced vibration -- 4.3 N-Space And Matrices -- 4.3.1 Passage from 2-space to n-space -- 4.3.2 Matrix operators on vectors in n-space -- 4.3.3 Identity matrix and zero matrix -- 4.3.4 Relevance to systems of linear algebraic equations -- 4.3.5 Vector and matrix functions -- 4.4 Linear Dependence And Independence Of Vectors -- 4.4.1 Linear dependence of a set of constant vectors in n-space -- 4.4.2 Linear dependence of vector functions in n-space -- 4.5 Existence, Uniqueness, And General Solution -- 4.5.1 The key theorems -- 4.5.2 Illustrating the theorems -- 4.6 Matrix Eigenvalue Problem -- 4.6.1 The eigenvalue problem -- 4.6.2 Solving an eigenvalue problem -- 4.6.3 Complex eigenvalues and eigenvectors -- 4.7 Homogeneous Systems With Constant Coefficients -- 4.7.1 Solution by the method of assumed exponential form -- 4.7.2 Application to the two-mass oscillator -- 4.7.3 The case of repeated eigenvalues -- 4.7.4 Modifying the method if there are defective eigenvalues -- 4.7.5 Complex eigenvalues -- 4.8 Dot Product And Additional Matrix Algebra -- 4.8.1 More about n-space: dot product, norm, and angle -- 4.8.2 Algebra of matrix operators -- 4.8.3 Inverse matrix.
4.9 Explicit Solution Of x' = Ax And The Matrix Exponential Function -- 4.9.1 Matrix exponential solution -- 4.9.2 Getting the exponential matrix series into closed form -- 4.10 Nonhomogeneous Systems -- 4.10.1 Solution by variation of parameters -- 4.10.2 Constant coefficient matrix -- 4.10.3 Particular solution by undetermined coefficients -- Chapter 4 Review -- 5 Laplace Transform -- 5.1 Introduction -- 5.2 The Transform And Its Inverse -- 5.2.1 Laplace transform -- 5.2.2 Linearity property of the transform -- 5.2.3 Exponential order, piecewise continuity, and conditions for existence of the transform -- 5.2.4 Inverse transform -- 5.2.5 Introduction to the determination of inverse transforms -- 5.3 Application To The Solution Of Differential Equations -- 5.3.1 First-order equations -- 5.3.2 Higher-order equations -- 5.3.3 Systems -- 5.3.4 Application to a nonconstant-coefficient equation -- Bessel's equation -- 5.4 Discontinuous Forcing Functions -- Heaviside Step Function -- 5.4.1 Motivation -- 5.4.2 Heaviside step function and piecewise-defined functions -- 5.4.3 Transforms of Heaviside and time-delayed functions -- 5.4.4 Differential equations with piecewise-defined forcing functions -- 5.4.5 Periodic forcing functions -- 5.5 Convolution -- 5.5.1 Definition of Laplace convolution -- 5.5.2 Convolution theorem -- 5.5.3 Applications -- 5.5.4 Integro-differential equations and integral equations -- 5.6 Impulsive Forcing Functions -- Dirac Delta Function -- 5.6.1 Impulsive forces -- 5.6.2 Dirac delta function -- 5.6.3 The jump caused by the delta function -- 5.6.4 Caution -- 5.6.5 Impulse response function -- Chapter 5 Review -- 6 Series Solutions -- 6.1 Introduction -- 6.2 Power Series And Taylor Series -- 6.2.1 Power series -- 6.2.2 Manipulation of power series -- 6.2.3 Taylor series -- 6.3 Power Series Solution About A Regular Point.
6.3.1 Power series solution theorem -- 6.3.2 Applications -- 6.4 Legendre And Bessel Equations -- 6.4.1 Introduction -- 6.4.2 Legendre's equation -- 6.4.3 Bessel's equation -- 6.5 The Method of Frobenius -- 6.5.1 Motivation -- 6.5.2 Regular and irregular singular points -- 6.5.3 The method of Frobenius -- Chapter 6 Review -- 7 Systems Of Nonlinear Differential Equations -- 7.1 Introduction -- 7.2 The Phase Plane -- 7.2.1 Phase plane method -- 7.2.2 Application to nonlinear pendulum -- 7.2.3 Singular points and their stability -- 7.3 Linear Systems -- 7.3.1 Introduction -- 7.3.2 Purely imaginary eigenvalues (Center) -- 7.3.3 Complex conjugate eigenvalues (Spiral) -- 7.3.4 Real eigenvalues of the same sign (Node) -- 7.3.5 Real eigenvalues of opposite sign (Saddle) -- 7.4 Nonlinear Systems -- 7.4.1 Local linearization -- 7.4.2 Predator-prey population dynamics -- 7.4.3 Competing species -- 7.5 Limit Cycles -- 7.6 Numerical Solution Of Systems By Euler's Method -- 7.6.1 Initial value problems -- 7.6.2 Existence and uniqueness for nonlinear systems -- 7.6.3 Linear boundary value problems -- Chapter 7 Review -- Appendix A: Review Of Partial Fraction Expansions -- Appendix B: Review Of Determinants -- Appendix C: Review Of Gauss Elimination -- Appendix D: Review Of Complex Numbers And The Complex Plane -- Answers To Exercises -- Index -- Selected formulas.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=7103464 1 Available
Total holds: 0

Cover -- Title Page -- Copyright -- Contents -- Preface -- 1 First-Order Differential Equations -- 1.1 Motivation And Overview -- 1.1.1 Introduction -- 1.1.2 Modeling -- 1.1.3 The order of a differential equation -- 1.1.4 Linear and nonlinear equations -- 1.1.5 Ourplan -- 1.1.6 Direction field -- 1.1.7 Computer software -- 1.2 Linear First-Order Equations -- 1.2.1 The simplest case -- 1.2.2 The homogeneous equation -- 1.2.3 Solving the full equation by the integrating factor method -- 1.2.4 Existence and uniqueness for the linear equation -- 1.3 Applications Of Linear First-Order Equations -- 1.3.1 Population dynamics -- exponential model -- 1.3.2 Radioactive decay -- carbon dating -- 1.3.3 Mixing problems -- a one-compartment model -- 1.3.4 The phase line, equilibrium points, and stability -- 1.3.5 Electrical circuits -- 1.4 Nonlinear First-Order Equations That Are Separable -- 1.5 Existence And Uniqueness -- 1.5.1 An existence and uniqueness theorem -- 1.5.2 Illustrating the theorem -- 1.5.3 Application to free fall -- physical significance of nonuniqueness -- 1.6 Applications Of Nonlinear First-Order Equations -- 1.6.1 The logistic model of population dynamics -- 1.6.2 Stability of equilibrium points and linearized stability analysis -- 1.7 Exact Equations And Equations That Can Be Made Exact -- 1.7.1 Exact differential equations -- 1.7.2 Making an equation exact -- integrating factors -- 1.8 Solution By Substitution -- 1.8.1 Bernoulli's equation -- 1.8.2 Homogeneous equations -- 1.9 Numerical Solution By Euler's Method -- 1.9.1 Euler's method -- 1.9.2 Convergence of Euler's method -- 1.9.3 Higher-order methods -- Chapter 1 Review -- 2 Higher-Order Linear Equations -- 2.1 Linear Differential Equations Of Second Order -- 2.1.1 Introduction -- 2.1.2 Operator notation and linear differential operators -- 2.1.3 Superposition principle.

2.2 Constant-Coefficient Equations -- 2.2.1 Constant coefficients -- 2.2.2 Seeking a general solution -- 2.2.3 Initial value problem -- 2.3 Complex Roots -- 2.3.1 Complex exponential function -- 2.3.2 Complex characteristic roots -- 2.4 Linear Independence -- Existence, Uniqueness, General Solution -- 2.4.1 Linear dependence and linear independence -- 2.4.2 Existence, uniqueness, and general solution -- 2.4.3 Abel's formula and Wronskian test for linear independence -- 2.4.4 Building a solution method on these results -- 2.5 Reduction Of Order -- 2.5.1 Deriving the formula -- 2.5.2 The method rather than the formula -- 2.5.3 About the method of reduction of order -- 2.6 Cauchy-Euler Equations -- 2.6.1 General solution -- 2.6.2 Repeated roots and reduction of order -- 2.6.3 Complex roots -- 2.7 The General Theory For Higher-Order Equations -- 2.7.1 Theorems for nth-order linear equations -- 2.7.2 Constant-coefficient equations -- 2.7.3 Cauchy-Euler equations -- 2.8 Nonhomogeneous Equations -- 2.8.1 General solution -- 2.8.2 The scaling and superposition of forcing functions -- 2.9 Particular Solution By Undetermined Coefficients -- 2.9.1 Undetermined coefficients -- 2.9.2 A special case -- the complex exponential method -- 2.10 Particular Solution By Variation Of Parameters -- 2.10.1 First-order equations -- 2.10.2 Second-order equations -- Chapter 2 Review -- 3 Applications Of Higher-Order Equations -- 3.1 Introduction -- 3.2 Linear Harmonic Oscillator -- Free Oscillation -- 3.2.1 Mass-spring oscillator -- 3.2.2 Undamped free oscillation -- 3.2.3 Pendulum -- 3.3 Free Oscillation With Damping -- 3.3.1 Underdamped -- 3.3.2 Critically damped -- 3.3.3 Overdamped -- 3.4 Forced Oscillation -- 3.4.1 Undamped, c = 0 -- 3.4.2 Damped, c > -- 0 -- 3.5 Steady-State Diffusion -- A Boundary Value Problem -- 3.5.1 Boundary value problems.

existence and uniqueness -- 3.5.2 Steady-state heat conduction in a rod -- 3.6 Introduction To The Eigenvalue Problem -- Column Buckling -- 3.6.1 An eigenvalue problem -- 3.6.2 Application to column buckling -- Chapter 3 Review -- 4 Systems Of Linear Differential Equations -- 4.1 Introduction, And Solution By Elimination -- 4.1.1 Introduction -- 4.1.2 Physical examples -- 4.1.3 Solutions, existence, and uniqueness -- 4.1.4 Solution by elimination -- 4.1.5 Auxiliary variables -- 4.2 Application To Coupled Oscillators -- 4.2.1 Coupled oscillators -- 4.2.2 Reduction to first-order system by auxiliary variables -- 4.2.3 The free vibration -- 4.2.4 The forced vibration -- 4.3 N-Space And Matrices -- 4.3.1 Passage from 2-space to n-space -- 4.3.2 Matrix operators on vectors in n-space -- 4.3.3 Identity matrix and zero matrix -- 4.3.4 Relevance to systems of linear algebraic equations -- 4.3.5 Vector and matrix functions -- 4.4 Linear Dependence And Independence Of Vectors -- 4.4.1 Linear dependence of a set of constant vectors in n-space -- 4.4.2 Linear dependence of vector functions in n-space -- 4.5 Existence, Uniqueness, And General Solution -- 4.5.1 The key theorems -- 4.5.2 Illustrating the theorems -- 4.6 Matrix Eigenvalue Problem -- 4.6.1 The eigenvalue problem -- 4.6.2 Solving an eigenvalue problem -- 4.6.3 Complex eigenvalues and eigenvectors -- 4.7 Homogeneous Systems With Constant Coefficients -- 4.7.1 Solution by the method of assumed exponential form -- 4.7.2 Application to the two-mass oscillator -- 4.7.3 The case of repeated eigenvalues -- 4.7.4 Modifying the method if there are defective eigenvalues -- 4.7.5 Complex eigenvalues -- 4.8 Dot Product And Additional Matrix Algebra -- 4.8.1 More about n-space: dot product, norm, and angle -- 4.8.2 Algebra of matrix operators -- 4.8.3 Inverse matrix.

4.9 Explicit Solution Of x' = Ax And The Matrix Exponential Function -- 4.9.1 Matrix exponential solution -- 4.9.2 Getting the exponential matrix series into closed form -- 4.10 Nonhomogeneous Systems -- 4.10.1 Solution by variation of parameters -- 4.10.2 Constant coefficient matrix -- 4.10.3 Particular solution by undetermined coefficients -- Chapter 4 Review -- 5 Laplace Transform -- 5.1 Introduction -- 5.2 The Transform And Its Inverse -- 5.2.1 Laplace transform -- 5.2.2 Linearity property of the transform -- 5.2.3 Exponential order, piecewise continuity, and conditions for existence of the transform -- 5.2.4 Inverse transform -- 5.2.5 Introduction to the determination of inverse transforms -- 5.3 Application To The Solution Of Differential Equations -- 5.3.1 First-order equations -- 5.3.2 Higher-order equations -- 5.3.3 Systems -- 5.3.4 Application to a nonconstant-coefficient equation -- Bessel's equation -- 5.4 Discontinuous Forcing Functions -- Heaviside Step Function -- 5.4.1 Motivation -- 5.4.2 Heaviside step function and piecewise-defined functions -- 5.4.3 Transforms of Heaviside and time-delayed functions -- 5.4.4 Differential equations with piecewise-defined forcing functions -- 5.4.5 Periodic forcing functions -- 5.5 Convolution -- 5.5.1 Definition of Laplace convolution -- 5.5.2 Convolution theorem -- 5.5.3 Applications -- 5.5.4 Integro-differential equations and integral equations -- 5.6 Impulsive Forcing Functions -- Dirac Delta Function -- 5.6.1 Impulsive forces -- 5.6.2 Dirac delta function -- 5.6.3 The jump caused by the delta function -- 5.6.4 Caution -- 5.6.5 Impulse response function -- Chapter 5 Review -- 6 Series Solutions -- 6.1 Introduction -- 6.2 Power Series And Taylor Series -- 6.2.1 Power series -- 6.2.2 Manipulation of power series -- 6.2.3 Taylor series -- 6.3 Power Series Solution About A Regular Point.

6.3.1 Power series solution theorem -- 6.3.2 Applications -- 6.4 Legendre And Bessel Equations -- 6.4.1 Introduction -- 6.4.2 Legendre's equation -- 6.4.3 Bessel's equation -- 6.5 The Method of Frobenius -- 6.5.1 Motivation -- 6.5.2 Regular and irregular singular points -- 6.5.3 The method of Frobenius -- Chapter 6 Review -- 7 Systems Of Nonlinear Differential Equations -- 7.1 Introduction -- 7.2 The Phase Plane -- 7.2.1 Phase plane method -- 7.2.2 Application to nonlinear pendulum -- 7.2.3 Singular points and their stability -- 7.3 Linear Systems -- 7.3.1 Introduction -- 7.3.2 Purely imaginary eigenvalues (Center) -- 7.3.3 Complex conjugate eigenvalues (Spiral) -- 7.3.4 Real eigenvalues of the same sign (Node) -- 7.3.5 Real eigenvalues of opposite sign (Saddle) -- 7.4 Nonlinear Systems -- 7.4.1 Local linearization -- 7.4.2 Predator-prey population dynamics -- 7.4.3 Competing species -- 7.5 Limit Cycles -- 7.6 Numerical Solution Of Systems By Euler's Method -- 7.6.1 Initial value problems -- 7.6.2 Existence and uniqueness for nonlinear systems -- 7.6.3 Linear boundary value problems -- Chapter 7 Review -- Appendix A: Review Of Partial Fraction Expansions -- Appendix B: Review Of Determinants -- Appendix C: Review Of Gauss Elimination -- Appendix D: Review Of Complex Numbers And The Complex Plane -- Answers To Exercises -- Index -- Selected formulas.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.