IUKL Library
Normal view MARC view ISBD view

RF / Microwave Circuit Design for Wireless Applications.

By: Rohde, Ulrich L.
Material type: materialTypeLabelBookSeries: New York Academy of Sciences Ser: Publisher: Newark : John Wiley & Sons, Incorporated, 2012Copyright date: �2013Description: 1 online resource (915 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9781118431405.Genre/Form: Electronic books.Online resources: Click to View
Contents:
RF/Microwave Circuit Design for WirelessI Applications -- Contents -- Foreword -- Preface -- 1 Introduction to Wireless Circuit Design -- 1.1 Introduction -- 1.2 System Functions -- 1.3 The Radio Channel and Modulation Requirements -- 1.3.1 Introduction -- 1.3.2 Channel Impulse Response -- 1.3.3 Doppler Effect -- 1.3.4 Transfer Function -- 1.3.5 Time Response of Channel Impulse Response and Transfer Function -- 1.3.6 Lessons Learned -- 1.3.7 Wireless Signal Example: The TDMA System in GSM -- 1.3.7.1 Frequency Division Multiple Access (FDMA) -- 1.3.7.2 Time-Division Multiple Access (TDMA) -- 1.3.7.3 Code-Division Multiple Access (CDMA) -- 1.3.7.4 TDMA in GSM -- 1.3.7.5 TDMA Structure -- 1.3.7.6 Bit Synchronization -- 1.3.7.7 Compensation of Multipath Reception -- 1.3.8 From GSM to UMTS to LTE -- 1.4 About Bits, Symbols, and Waveforms -- 1.4.1 Introduction -- 1.4.1.1 Representation of a Modulated RF Carrier -- 1.4.1.2 The Spectrum of a Digitally Modulated Carrier -- 1.4.2 Some Fundamentals of Digital Modulation Techniques -- 1.4.2.1 Spread-Spectrum and CDMA Modulation Techniques -- 1.4.2.2 Orthogonal Frequency Division Modulation (OFDM) and Single- Carrier Frequency-Division Multiple Access (SC-FDMA) -- 1.5 Analysis of Wireless Systems -- 1.5.1 Analog and Digital Receiver Designs -- 1.5.1.1 Receiver Design Examples -- 1.5.1.2 PLL CAD Simulation -- 1.5.2 Transmitters -- 1.5.2.1 Linear Digital Modulation -- 1.5.2.2 Digital and Analog FM -- 1.5.2.3 Single Sideband AM (SSB-AM) -- 1.5.2.4 Designing with the SA900 -- 1.5.2.5 ISM Band Application -- 1.6 Building Blocks -- 1.7 System Specifications and Their Relationship to Circuit Design -- 1.7.1 System Noise and Noise Floor -- 1.7.2 System Amplitude and Phase Behavior -- 1.8 Testing -- 1.8.1 Introduction -- 1.8.2 Transmission and Reception Quality -- 1.8.3 Base Station Simulation -- 1.8.4 GSM.
1.8.5 DECT -- 1.9 Converting C/N or SNR to EB/N0 -- References -- Further Reading -- 2 Models for Active Devices -- 2.1 Diodes -- 2.1.1 Large-Signal Diode Model -- 2.1.2 Mixer and Detector Diodes -- 2.1.2.1 Junction Capacitance -- 2.1.2.2 Parameter Trade-Offs -- 2.1.2.3 Mixer Diodes -- 2.1.2.4 Linear Diode Model -- 2.1.3 PIN Diodes -- 2.1.3.1 Introduction -- 2.1.3.2 Large-Signal PIN Diode Model -- 2.1.3.3 Basic Theory: Variable Resistance -- 2.1.3.4 Breakdown Voltage, Capacitance, Q Factor -- 2.1.3.5 PIN Diode Applications -- 2.1.3.6 Example: A PIN Diode (Ss(B Network for TV Tuners -- 2.1.4 Tuning Diodes -- 2.1.4.1 Introduction -- 2.1.4.2 Tuning Diode Physics -- 2.1.4.3 Capacitance -- 2.1.4.4 Q Factor or Diode Loss -- 2.1.4.5 Distortion Products -- 2.1.4.6 Electrical Properties of Tuning Diodes -- 2.1.4.7 Diode-Tuned Resonant Circuits -- 2.2 Bipolar Transistors -- 2.2.1 Transistor Structure Types -- 2.2.2 Large-Signal Behavior of Bipolar Transistors -- 2.2.2.1 Electrical Characteristics and Specifications -- 2.2.3 Large-Signal Transistors in the Forward-Active Region -- 2.2.4 Improving RF Performance by Means of Heterostructures -- 2.2.5 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region of BJTs -- 2.2.6 Effects of Collector Current and Voltage on Large-Signal Characteristics in the Forward-Active Region of HBTs -- 2.2.7 Saturation and Inverse Active Regions -- 2.2.8 Self-Heating -- 2.2.9 Small-Signal Models of Bipolar Transistors -- 2.3 Field-Effect Transistors -- 2.4 Large-Signal Behavior of JFETs -- 2.4.1 Small-Signal Behavior of JFETs -- 2.4.2 Large-Signal Behavior of MOSFETs -- 2.4.2.1 Transfer Characteristics of MOS Devices -- 2.4.2.2 MOS Device Voltage Limitations -- 2.4.3 Small-Signal Model of the MOS Transistor in Saturation -- 2.4.4 Short-Channel Effects in FETs -- 2.4.5 Small-Signal Models of MOSFETs.
2.4.5.1 Subthreshold Conduction in MOSFETs -- 2.4.5.2 Substrate Flow in MOSFETs -- 2.4.6 III-V MESFETs and HEMTs -- 2.4.6.1 Introduction -- 2.4.6.2 HEMTs -- 2.4.6.3 Large-Signal Behavior of MESFETs and HEMTs -- 2.4.6.4 The Modified Materka-Kacprzak Model -- 2.4.6.5 Enhancement/Depletion FETs -- 2.4.7 Small-Signal GaAs MESFET and HEMT Model -- 2.5 Parameter Extraction of Active Devices -- 2.5.1 Introduction -- 2.5.2 Typical SPICE Parameters -- 2.5.3 Noise Modeling -- 2.5.3.1 Diode Noise Model -- 2.5.3.2 BJT Noise Model -- 2.5.3.3 JFET and MESFET Noise Model -- 2.5.3.4 MOSFET Noise Model -- 2.5.4 Scalable Device Models -- 2.5.5 Generating a Databank for Parameter Extraction -- 2.5.5.1 MESFETs -- 2.5.5.2 A Case Study -- 2.5.6 Conclusions -- 2.5.7 Device Libraries -- 2.5.8 Physics-Based MESFET Modeling -- 2.5.9 Example: Improving the BFR193W Model -- References -- Further Reading -- 3 Amplifier Design with BJTs and FETs -- 3.1 Properties of Amplifiers -- 3.1.1 Introduction -- 3.1.2 Gain -- 3.1.3 Noise Figure (NF) -- 3.1.4 Linearity -- 3.1.5 AGC -- 3.1.6 Bias and Power Voltage and Current (Power Consumption) -- 3.2 Amplifier Gain, Stability, and Matching -- 3.2.1 Scattering Parameter Relationships -- 3.2.2 Low-Noise Amplifiers -- 3.2.3 High-Gain Amplifiers -- 3.2.4 Low-Voltage Open-Collector Design -- 3.3 Single-Stage Feedback Amplifiers -- 3.3.1 Lossless or Noiseless Feedback -- 3.3.2 Broadband Matching -- 3.4 Two-Stage Amplifiers -- 3.5 Amplifiers with Three or More Stages -- 3.5.1 Stability of Multistage Amplifiers -- 3.6 A Novel Approach to Voltage-Controlled Tuned Filters Including CAD Validation -- 3.6.1 Diode Performance -- 3.6.2 A VHF Example -- 3.6.3 An HF/VHF Voltage-Controlled Filter -- 3.6.4 Improving the VHF Filter -- 3.6.5 Conclusion -- 3.7 Differential Amplifiers -- 3.8 Frequency Doublers.
3.9 Multistage Amplifiers with Automatic Gain Control (AGC) -- 3.10 Biasing -- 3.10.1 RF Biasing -- 3.10.2 dc Biasing -- 3.10.3 dc Biasing of IC-Type Amplifiers -- 3.11 Push-Pull/Parallel Amplifiers -- 3.12 Power Amplifiers -- 3.12.1 Example 1: 7-W Class C BJT Amplifier for 1.6 GHz -- 3.12.2 Example: A Highly Efficient 3.5 GHz Inverse Class-F GaN HEMT Power Amplifier -- 3.12.2.1 Inverse Class-F PAs -- 3.12.2.2 Design Methodology -- 3.12.2.3 Implementation and Measurement Results -- 3.12.2.4 Conclusions -- 3.12.3 Linear Amplifier Systems -- 3.12.3.1 Class A/AB Operation and Power Back-Off -- 3.12.3.2 RF Feedback -- 3.12.3.3 Modulation Feedback -- 3.12.3.4 Feedforward -- 3.12.3.5 Predistortion -- 3.12.3.6 Baseband Predistortion -- 3.12.4 Impedance Matching Networks Applied to RF Power Transistors -- 3.12.5 Example 2: Low-Noise Amplifier Using Distributed Elements -- 3.12.6 Example 3: 1-W Amplifier Using the CLY15 -- 3.12.7 Example 4: 90-W Push-Pull BJT Amplifier at 430 MHz -- 3.12.8 Quasiparallel Transistors for Improved Linearity -- 3.12.9 Distribution Amplifiers -- 3.12.10 Stability Analysis of a Power Amplifier -- References -- Further Reading -- 4 Mixer Design -- 4.1 Introduction -- 4.2 Properties of Mixers -- 4.2.1 Conversion Gain/Loss -- 4.2.2 Noise Figure -- 4.2.2.1 Passive Mixer -- 4.2.2.2 Example -- 4.2.2.3 Exact Mathematical Nonlinear Approach -- 4.2.2.4 Differential CMOS Mixer -- 4.2.2.5 SSB Versus DSB Noise Figure -- 4.2.3 Linearity -- 4.2.3.1 1 dB Compression Point -- 4.2.3.2 1 dB Desensitization Point -- 4.2.3.3 Dynamic Range -- 4.2.3.4 Harmonic Intermodulation Products (HIP) -- 4.2.3.5 Intermodulation Distortion (IMD) -- 4.2.4 LO Drive Level -- 4.2.5 Interport Isolation -- 4.2.6 Port VSWR -- 4.2.7 dc Offset -- 4.2.8 dc Polarity -- 4.2.9 Power Consumption -- 4.3 Diode Mixers -- 4.3.1 Single-Diode Mixer -- 4.3.2 Single-Balanced Mixer.
4.3.2.1 Subharmonically Pumped Single-Balanced Mixer -- 4.3.3 Diode-Ring Mixer -- 4.3.3.1 Termination-Insensitive Mixer -- 4.3.3.2 Phase Detector -- 4.3.3.3 Binary Phase-Shift Keying (BPSK) Modulator -- 4.3.3.4 Quadrature Phase-Shift Keying (QPSK) Modulator -- 4.3.3.5 Quadrature IF Mixer -- 4.3.3.6 Image-Reject Mixer -- 4.3.3.7 Diode Attenuator/Switch -- 4.3.3.8 Single-Sideband (SSB) or In-Phase/Quadrature (I/Q) Modulator -- 4.3.3.9 Triple-Balanced Mixer -- 4.3.3.10 Rohde and Schwarz Subharmonically Pumped DBM -- 4.4 Transistor Mixers -- 4.4.1 BJT Gilbert Cell -- 4.4.2 BJT Gilbert Cell with Feedback -- 4.4.3 FET Mixers -- 4.4.4 MOSFET Gilbert Cell -- 4.4.5 GaAsFET Single-Gate Switch-Resistive Mixer -- 4.4.5.1 Noise in Resistive Mixers -- References -- Further Reading -- 5 RF/Wireless Oscillators -- 5.1 Introduction of Frequency Control -- 5.2 Background -- 5.3 Oscillator Design -- 5.3.1 Basics of Oscillators -- 5.3.1.1 Example 1 -- 5.3.1.2 Example 2 -- 5.3.1.3 Two-Port Oscillator -- 5.3.1.4 Amplitude Stability -- 5.3.1.5 Phase Stability -- 5.4 Oscillator Circuits -- 5.4.1 Hartley -- 5.4.2 Colpitts -- 5.4.3 Clapp-Gouriet -- 5.5 Design of RF Oscillators -- 5.5.1 General Thoughts on Transistor Oscillators -- 5.5.2 Two-Port Microwave/RF Oscillator Design -- 5.5.3 Ceramic-Resonator Oscillators -- 5.5.3.1 Calculation of Equivalent Circuit -- 5.5.4 Using a Microstrip Inductor as the Oscillator Resonator -- 5.5.4.1 Increasing Loaded Q -- 5.5.4.2 High-Q Microstrip Inductor -- 5.5.4.3 UHF VCO Using the Tapped-Inductor Differential Oscillator at 900 MHz -- 5.5.5 Hartley Microstrip Resonator Oscillator -- 5.5.6 Crystal Oscillators -- 5.5.7 Voltage-Controlled Oscillators -- 5.5.8 Diode-Tuned Resonant Circuits -- 5.5.8.1 Tuner Diode in Parallel-Resonant Circuit -- 5.5.8.2 Capacitances Connected in Parallel or in Series with the Tuning Diode -- 5.5.8.3 Tuning Range.
5.5.8.4 Tracking.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=7103654 1 Available
Total holds: 0

RF/Microwave Circuit Design for WirelessI Applications -- Contents -- Foreword -- Preface -- 1 Introduction to Wireless Circuit Design -- 1.1 Introduction -- 1.2 System Functions -- 1.3 The Radio Channel and Modulation Requirements -- 1.3.1 Introduction -- 1.3.2 Channel Impulse Response -- 1.3.3 Doppler Effect -- 1.3.4 Transfer Function -- 1.3.5 Time Response of Channel Impulse Response and Transfer Function -- 1.3.6 Lessons Learned -- 1.3.7 Wireless Signal Example: The TDMA System in GSM -- 1.3.7.1 Frequency Division Multiple Access (FDMA) -- 1.3.7.2 Time-Division Multiple Access (TDMA) -- 1.3.7.3 Code-Division Multiple Access (CDMA) -- 1.3.7.4 TDMA in GSM -- 1.3.7.5 TDMA Structure -- 1.3.7.6 Bit Synchronization -- 1.3.7.7 Compensation of Multipath Reception -- 1.3.8 From GSM to UMTS to LTE -- 1.4 About Bits, Symbols, and Waveforms -- 1.4.1 Introduction -- 1.4.1.1 Representation of a Modulated RF Carrier -- 1.4.1.2 The Spectrum of a Digitally Modulated Carrier -- 1.4.2 Some Fundamentals of Digital Modulation Techniques -- 1.4.2.1 Spread-Spectrum and CDMA Modulation Techniques -- 1.4.2.2 Orthogonal Frequency Division Modulation (OFDM) and Single- Carrier Frequency-Division Multiple Access (SC-FDMA) -- 1.5 Analysis of Wireless Systems -- 1.5.1 Analog and Digital Receiver Designs -- 1.5.1.1 Receiver Design Examples -- 1.5.1.2 PLL CAD Simulation -- 1.5.2 Transmitters -- 1.5.2.1 Linear Digital Modulation -- 1.5.2.2 Digital and Analog FM -- 1.5.2.3 Single Sideband AM (SSB-AM) -- 1.5.2.4 Designing with the SA900 -- 1.5.2.5 ISM Band Application -- 1.6 Building Blocks -- 1.7 System Specifications and Their Relationship to Circuit Design -- 1.7.1 System Noise and Noise Floor -- 1.7.2 System Amplitude and Phase Behavior -- 1.8 Testing -- 1.8.1 Introduction -- 1.8.2 Transmission and Reception Quality -- 1.8.3 Base Station Simulation -- 1.8.4 GSM.

1.8.5 DECT -- 1.9 Converting C/N or SNR to EB/N0 -- References -- Further Reading -- 2 Models for Active Devices -- 2.1 Diodes -- 2.1.1 Large-Signal Diode Model -- 2.1.2 Mixer and Detector Diodes -- 2.1.2.1 Junction Capacitance -- 2.1.2.2 Parameter Trade-Offs -- 2.1.2.3 Mixer Diodes -- 2.1.2.4 Linear Diode Model -- 2.1.3 PIN Diodes -- 2.1.3.1 Introduction -- 2.1.3.2 Large-Signal PIN Diode Model -- 2.1.3.3 Basic Theory: Variable Resistance -- 2.1.3.4 Breakdown Voltage, Capacitance, Q Factor -- 2.1.3.5 PIN Diode Applications -- 2.1.3.6 Example: A PIN Diode (Ss(B Network for TV Tuners -- 2.1.4 Tuning Diodes -- 2.1.4.1 Introduction -- 2.1.4.2 Tuning Diode Physics -- 2.1.4.3 Capacitance -- 2.1.4.4 Q Factor or Diode Loss -- 2.1.4.5 Distortion Products -- 2.1.4.6 Electrical Properties of Tuning Diodes -- 2.1.4.7 Diode-Tuned Resonant Circuits -- 2.2 Bipolar Transistors -- 2.2.1 Transistor Structure Types -- 2.2.2 Large-Signal Behavior of Bipolar Transistors -- 2.2.2.1 Electrical Characteristics and Specifications -- 2.2.3 Large-Signal Transistors in the Forward-Active Region -- 2.2.4 Improving RF Performance by Means of Heterostructures -- 2.2.5 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region of BJTs -- 2.2.6 Effects of Collector Current and Voltage on Large-Signal Characteristics in the Forward-Active Region of HBTs -- 2.2.7 Saturation and Inverse Active Regions -- 2.2.8 Self-Heating -- 2.2.9 Small-Signal Models of Bipolar Transistors -- 2.3 Field-Effect Transistors -- 2.4 Large-Signal Behavior of JFETs -- 2.4.1 Small-Signal Behavior of JFETs -- 2.4.2 Large-Signal Behavior of MOSFETs -- 2.4.2.1 Transfer Characteristics of MOS Devices -- 2.4.2.2 MOS Device Voltage Limitations -- 2.4.3 Small-Signal Model of the MOS Transistor in Saturation -- 2.4.4 Short-Channel Effects in FETs -- 2.4.5 Small-Signal Models of MOSFETs.

2.4.5.1 Subthreshold Conduction in MOSFETs -- 2.4.5.2 Substrate Flow in MOSFETs -- 2.4.6 III-V MESFETs and HEMTs -- 2.4.6.1 Introduction -- 2.4.6.2 HEMTs -- 2.4.6.3 Large-Signal Behavior of MESFETs and HEMTs -- 2.4.6.4 The Modified Materka-Kacprzak Model -- 2.4.6.5 Enhancement/Depletion FETs -- 2.4.7 Small-Signal GaAs MESFET and HEMT Model -- 2.5 Parameter Extraction of Active Devices -- 2.5.1 Introduction -- 2.5.2 Typical SPICE Parameters -- 2.5.3 Noise Modeling -- 2.5.3.1 Diode Noise Model -- 2.5.3.2 BJT Noise Model -- 2.5.3.3 JFET and MESFET Noise Model -- 2.5.3.4 MOSFET Noise Model -- 2.5.4 Scalable Device Models -- 2.5.5 Generating a Databank for Parameter Extraction -- 2.5.5.1 MESFETs -- 2.5.5.2 A Case Study -- 2.5.6 Conclusions -- 2.5.7 Device Libraries -- 2.5.8 Physics-Based MESFET Modeling -- 2.5.9 Example: Improving the BFR193W Model -- References -- Further Reading -- 3 Amplifier Design with BJTs and FETs -- 3.1 Properties of Amplifiers -- 3.1.1 Introduction -- 3.1.2 Gain -- 3.1.3 Noise Figure (NF) -- 3.1.4 Linearity -- 3.1.5 AGC -- 3.1.6 Bias and Power Voltage and Current (Power Consumption) -- 3.2 Amplifier Gain, Stability, and Matching -- 3.2.1 Scattering Parameter Relationships -- 3.2.2 Low-Noise Amplifiers -- 3.2.3 High-Gain Amplifiers -- 3.2.4 Low-Voltage Open-Collector Design -- 3.3 Single-Stage Feedback Amplifiers -- 3.3.1 Lossless or Noiseless Feedback -- 3.3.2 Broadband Matching -- 3.4 Two-Stage Amplifiers -- 3.5 Amplifiers with Three or More Stages -- 3.5.1 Stability of Multistage Amplifiers -- 3.6 A Novel Approach to Voltage-Controlled Tuned Filters Including CAD Validation -- 3.6.1 Diode Performance -- 3.6.2 A VHF Example -- 3.6.3 An HF/VHF Voltage-Controlled Filter -- 3.6.4 Improving the VHF Filter -- 3.6.5 Conclusion -- 3.7 Differential Amplifiers -- 3.8 Frequency Doublers.

3.9 Multistage Amplifiers with Automatic Gain Control (AGC) -- 3.10 Biasing -- 3.10.1 RF Biasing -- 3.10.2 dc Biasing -- 3.10.3 dc Biasing of IC-Type Amplifiers -- 3.11 Push-Pull/Parallel Amplifiers -- 3.12 Power Amplifiers -- 3.12.1 Example 1: 7-W Class C BJT Amplifier for 1.6 GHz -- 3.12.2 Example: A Highly Efficient 3.5 GHz Inverse Class-F GaN HEMT Power Amplifier -- 3.12.2.1 Inverse Class-F PAs -- 3.12.2.2 Design Methodology -- 3.12.2.3 Implementation and Measurement Results -- 3.12.2.4 Conclusions -- 3.12.3 Linear Amplifier Systems -- 3.12.3.1 Class A/AB Operation and Power Back-Off -- 3.12.3.2 RF Feedback -- 3.12.3.3 Modulation Feedback -- 3.12.3.4 Feedforward -- 3.12.3.5 Predistortion -- 3.12.3.6 Baseband Predistortion -- 3.12.4 Impedance Matching Networks Applied to RF Power Transistors -- 3.12.5 Example 2: Low-Noise Amplifier Using Distributed Elements -- 3.12.6 Example 3: 1-W Amplifier Using the CLY15 -- 3.12.7 Example 4: 90-W Push-Pull BJT Amplifier at 430 MHz -- 3.12.8 Quasiparallel Transistors for Improved Linearity -- 3.12.9 Distribution Amplifiers -- 3.12.10 Stability Analysis of a Power Amplifier -- References -- Further Reading -- 4 Mixer Design -- 4.1 Introduction -- 4.2 Properties of Mixers -- 4.2.1 Conversion Gain/Loss -- 4.2.2 Noise Figure -- 4.2.2.1 Passive Mixer -- 4.2.2.2 Example -- 4.2.2.3 Exact Mathematical Nonlinear Approach -- 4.2.2.4 Differential CMOS Mixer -- 4.2.2.5 SSB Versus DSB Noise Figure -- 4.2.3 Linearity -- 4.2.3.1 1 dB Compression Point -- 4.2.3.2 1 dB Desensitization Point -- 4.2.3.3 Dynamic Range -- 4.2.3.4 Harmonic Intermodulation Products (HIP) -- 4.2.3.5 Intermodulation Distortion (IMD) -- 4.2.4 LO Drive Level -- 4.2.5 Interport Isolation -- 4.2.6 Port VSWR -- 4.2.7 dc Offset -- 4.2.8 dc Polarity -- 4.2.9 Power Consumption -- 4.3 Diode Mixers -- 4.3.1 Single-Diode Mixer -- 4.3.2 Single-Balanced Mixer.

4.3.2.1 Subharmonically Pumped Single-Balanced Mixer -- 4.3.3 Diode-Ring Mixer -- 4.3.3.1 Termination-Insensitive Mixer -- 4.3.3.2 Phase Detector -- 4.3.3.3 Binary Phase-Shift Keying (BPSK) Modulator -- 4.3.3.4 Quadrature Phase-Shift Keying (QPSK) Modulator -- 4.3.3.5 Quadrature IF Mixer -- 4.3.3.6 Image-Reject Mixer -- 4.3.3.7 Diode Attenuator/Switch -- 4.3.3.8 Single-Sideband (SSB) or In-Phase/Quadrature (I/Q) Modulator -- 4.3.3.9 Triple-Balanced Mixer -- 4.3.3.10 Rohde and Schwarz Subharmonically Pumped DBM -- 4.4 Transistor Mixers -- 4.4.1 BJT Gilbert Cell -- 4.4.2 BJT Gilbert Cell with Feedback -- 4.4.3 FET Mixers -- 4.4.4 MOSFET Gilbert Cell -- 4.4.5 GaAsFET Single-Gate Switch-Resistive Mixer -- 4.4.5.1 Noise in Resistive Mixers -- References -- Further Reading -- 5 RF/Wireless Oscillators -- 5.1 Introduction of Frequency Control -- 5.2 Background -- 5.3 Oscillator Design -- 5.3.1 Basics of Oscillators -- 5.3.1.1 Example 1 -- 5.3.1.2 Example 2 -- 5.3.1.3 Two-Port Oscillator -- 5.3.1.4 Amplitude Stability -- 5.3.1.5 Phase Stability -- 5.4 Oscillator Circuits -- 5.4.1 Hartley -- 5.4.2 Colpitts -- 5.4.3 Clapp-Gouriet -- 5.5 Design of RF Oscillators -- 5.5.1 General Thoughts on Transistor Oscillators -- 5.5.2 Two-Port Microwave/RF Oscillator Design -- 5.5.3 Ceramic-Resonator Oscillators -- 5.5.3.1 Calculation of Equivalent Circuit -- 5.5.4 Using a Microstrip Inductor as the Oscillator Resonator -- 5.5.4.1 Increasing Loaded Q -- 5.5.4.2 High-Q Microstrip Inductor -- 5.5.4.3 UHF VCO Using the Tapped-Inductor Differential Oscillator at 900 MHz -- 5.5.5 Hartley Microstrip Resonator Oscillator -- 5.5.6 Crystal Oscillators -- 5.5.7 Voltage-Controlled Oscillators -- 5.5.8 Diode-Tuned Resonant Circuits -- 5.5.8.1 Tuner Diode in Parallel-Resonant Circuit -- 5.5.8.2 Capacitances Connected in Parallel or in Series with the Tuning Diode -- 5.5.8.3 Tuning Range.

5.5.8.4 Tracking.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.