IUKL Library
Normal view MARC view ISBD view

Electrical Conduction in Graphene and Nanotubes.

By: Fujita, Shigeji.
Material type: materialTypeLabelBookSeries: New York Academy of Sciences Ser: Publisher: Newark : John Wiley & Sons, Incorporated, 2013Copyright date: �2013Description: 1 online resource (308 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9783527676712.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Electrical Conduction in Graphene and Nanotubes -- Contents -- Preface -- Physical Constants, Units, Mathematical Signs and Symbols -- 1 Introduction -- 1.1 Carbon Nanotubes -- 1.2 Theoretical Background -- 1.2.1 Metals and Conduction Electrons -- 1.2.2 Quantum Mechanics -- 1.2.3 Heisenberg Uncertainty Principle -- 1.2.4 Bosons and Fermions -- 1.2.5 Fermi and Bose Distribution Functions -- 1.2.6 Composite Particles -- 1.2.7 Quasifree Electron Model -- 1.2.8 "Electrons" and "Holes" -- 1.2.9 The Gate Field Effect -- 1.3 Book Layout -- 1.4 Suggestions for Readers -- 1.4.1 Second Quantization -- 1.4.2 Semiclassical Theory of Electron Dynamics -- 1.4.3 Fermi Surface -- References -- 2 Kinetic Theory and the Boltzmann Equation -- 2.1 Diffusion and Thermal Conduction -- 2.2 Collision Rate: Mean Free Path -- 2.3 Electrical Conductivity and Matthiessen's Rule -- 2.4 The Hall Effect: "Electrons" and "Holes" -- 2.5 The Boltzmann Equation -- 2.6 The Current Relaxation Rate -- References -- 3 Bloch Electron Dynamics -- 3.1 Bloch Theorem in One Dimension -- 3.2 The Kronig-Penney Model -- 3.3 Bloch Theorem in Three Dimensions -- 3.4 Fermi Liquid Model -- 3.5 The Fermi Surface -- 3.6 Heat Capacity and Density of States -- 3.7 The Density of State in the Momentum Space -- 3.8 Equations of Motion for a Bloch Electron -- References -- 4 Phonons and Electron-Phonon Interaction -- 4.1 Phonons and Lattice Dynamics -- 4.2 Van Hove Singularities -- 4.2.1 Particles on a Stretched String (Coupled Harmonic Oscillators) -- 4.2.2 Low-Frequency Phonons -- 4.2.3 Discussion -- 4.3 Electron-Phonon Interaction -- 4.4 Phonon-Exchange Attraction -- References -- 5 Electrical Conductivity of Multiwalled Nanotubes -- 5.1 Introduction -- 5.2 Graphene -- 5.3 Lattice Stability and Reflection Symmetry -- 5.4 Single-Wall Nanotubes -- 5.5 Multiwalled Nanotubes -- 5.6 Summary and Discussion.
References -- 6 Semiconducting SWNTs -- 6.1 Introduction -- 6.2 Single-Wall Nanotubes -- 6.3 Summary and Discussion -- References -- 7 Superconductivity -- 7.1 Basic Properties of a Superconductor -- 7.1.1 Zero Resistance -- 7.1.2 Meissner Effect -- 7.1.3 Ring Supercurrent and Flux Quantization -- 7.1.4 Josephson Effects -- 7.1.5 Energy Gap -- 7.1.6 Sharp Phase Change -- 7.2 Occurrence of a Superconductor -- 7.2.1 Elemental Superconductors -- 7.2.2 Compound Superconductors -- 7.2.3 High-Tc Superconductors -- 7.3 Theoretical Survey -- 7.3.1 The Cause of Superconductivity -- 7.3.2 The Bardeen-Cooper-Schrieffer Theory -- 7.3.3 Quantum Statistical Theory -- 7.4 Quantum Statistical Theory of Superconductivity -- 7.4.1 The Generalized BCS Hamiltonian -- 7.5 The Cooper Pair Problem -- 7.6 Moving Pairons -- 7.7 The BCS Ground State -- 7.7.1 The Reduced Generalized BCS Hamiltonian -- 7.7.2 The Ground State -- 7.8 Remarks -- 7.8.1 The Nature of the Reduced Hamiltonian -- 7.8.2 Binding Energy per Pairon -- 7.8.3 The Energy Gap -- 7.8.4 The Energy Gap Equation -- 7.8.5 Neutral Supercondensate -- 7.8.6 Cooper Pairs (Pairons) -- 7.8.7 Formation of a Supercondensate and Occurrence of Superconductors -- 7.8.8 Blurred Fermi Surface -- 7.9 Bose-Einstein Condensation in 2D -- 7.10 Discussion -- References -- 8 Metallic (or Superconducting) SWNTs -- 8.1 Introduction -- 8.2 Graphene -- 8.3 The Full Hamiltonian -- 8.4 Moving Pairons -- 8.5 The Bose-Einstein Condensation of Pairons -- 8.6 Superconductivity in Metallic SWNTs -- 8.7 High-Field Transport in Metallic SWNTs -- 8.8 Zero-Bias Anomaly -- 8.9 Temperature Behavior and Current Saturation -- 8.10 Summary -- References -- 9 Magnetic Susceptibility -- 9.1 Magnetogyric Ratio -- 9.2 Pauli Paramagnetism -- 9.3 The Landau States and Levels -- 9.4 Landau Diamagnetism -- References -- 10 Magnetic Oscillations.
10.1 Onsager's Formula -- 10.2 Statistical Mechanical Calculations: 3D -- 10.3 Statistical Mechanical Calculations: 2D -- 10.4 Anisotropic Magnetoresistance in Copper -- 10.4.1 Introduction -- 10.4.2 Theory -- 10.4.3 Discussion -- 10.5 Shubnikov-de Haas Oscillations -- References -- 11 Quantum Hall Effect -- 11.1 Experimental Facts -- 11.2 Theoretical Developments -- 11.3 Theory of the Quantum Hall Effect -- 11.3.1 Introduction -- 11.3.2 The Model -- 11.3.3 The Integer QHE -- 11.3.4 The Fractional QHE -- 11.4 Discussion -- References -- 12 Quantum Hall Effect in Graphene -- 12.1 Introduction -- References -- 13 Seebeck Coefficient in Multiwalled Carbon Nanotubes -- 13.1 Introduction -- 13.2 Classical Theory of the Seebeck Coefficient in a Metal -- 13.3 Quantum Theory of the Seebeck Coefficient in a Metal -- 13.4 Simple Applications -- 13.5 Graphene and Carbon Nanotubes -- 13.6 Conduction in Multiwalled Carbon Nanotubes -- 13.7 Seebeck Coefficient in Multiwalled Carbon Nanotubes -- References -- 14 Miscellaneous -- 14.1 Metal-Insulator Transition in Vanadium Dioxide -- 14.1.1 Introduction -- 14.2 Conduction Electrons in Graphite -- 14.3 Coronet Fermi Surface in Beryllium -- 14.4 Magnetic Oscillations in Bismuth -- References -- Appendix -- A.1 Second Quantization -- A.1.1 Boson Creation and Annihilation Operators -- A.1.2 Observables -- A.1.3 Fermion Creation and Annihilation Operators -- A.1.4 Heisenberg Equation of Motion -- A.2 Eigenvalue Problem and Equation-of-Motion Method -- A.2.1 Energy-Eigenvalue Problem in Second Quantization -- A.2.2 Energies of Quasielectrons (or "Electrons") at 0K -- A.3 Derivation of the Cooper Equation (7.34) -- A.4 Proof of (7.94) -- A.5 Statistical Weight for the Landau States -- A.5.1 The Three-Dimensional Case -- A.5.2 The Two-Dimensional Case -- A.6 Derivation of Formulas (11.16)-(11.18) -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=7104677 1 Available
Total holds: 0

Electrical Conduction in Graphene and Nanotubes -- Contents -- Preface -- Physical Constants, Units, Mathematical Signs and Symbols -- 1 Introduction -- 1.1 Carbon Nanotubes -- 1.2 Theoretical Background -- 1.2.1 Metals and Conduction Electrons -- 1.2.2 Quantum Mechanics -- 1.2.3 Heisenberg Uncertainty Principle -- 1.2.4 Bosons and Fermions -- 1.2.5 Fermi and Bose Distribution Functions -- 1.2.6 Composite Particles -- 1.2.7 Quasifree Electron Model -- 1.2.8 "Electrons" and "Holes" -- 1.2.9 The Gate Field Effect -- 1.3 Book Layout -- 1.4 Suggestions for Readers -- 1.4.1 Second Quantization -- 1.4.2 Semiclassical Theory of Electron Dynamics -- 1.4.3 Fermi Surface -- References -- 2 Kinetic Theory and the Boltzmann Equation -- 2.1 Diffusion and Thermal Conduction -- 2.2 Collision Rate: Mean Free Path -- 2.3 Electrical Conductivity and Matthiessen's Rule -- 2.4 The Hall Effect: "Electrons" and "Holes" -- 2.5 The Boltzmann Equation -- 2.6 The Current Relaxation Rate -- References -- 3 Bloch Electron Dynamics -- 3.1 Bloch Theorem in One Dimension -- 3.2 The Kronig-Penney Model -- 3.3 Bloch Theorem in Three Dimensions -- 3.4 Fermi Liquid Model -- 3.5 The Fermi Surface -- 3.6 Heat Capacity and Density of States -- 3.7 The Density of State in the Momentum Space -- 3.8 Equations of Motion for a Bloch Electron -- References -- 4 Phonons and Electron-Phonon Interaction -- 4.1 Phonons and Lattice Dynamics -- 4.2 Van Hove Singularities -- 4.2.1 Particles on a Stretched String (Coupled Harmonic Oscillators) -- 4.2.2 Low-Frequency Phonons -- 4.2.3 Discussion -- 4.3 Electron-Phonon Interaction -- 4.4 Phonon-Exchange Attraction -- References -- 5 Electrical Conductivity of Multiwalled Nanotubes -- 5.1 Introduction -- 5.2 Graphene -- 5.3 Lattice Stability and Reflection Symmetry -- 5.4 Single-Wall Nanotubes -- 5.5 Multiwalled Nanotubes -- 5.6 Summary and Discussion.

References -- 6 Semiconducting SWNTs -- 6.1 Introduction -- 6.2 Single-Wall Nanotubes -- 6.3 Summary and Discussion -- References -- 7 Superconductivity -- 7.1 Basic Properties of a Superconductor -- 7.1.1 Zero Resistance -- 7.1.2 Meissner Effect -- 7.1.3 Ring Supercurrent and Flux Quantization -- 7.1.4 Josephson Effects -- 7.1.5 Energy Gap -- 7.1.6 Sharp Phase Change -- 7.2 Occurrence of a Superconductor -- 7.2.1 Elemental Superconductors -- 7.2.2 Compound Superconductors -- 7.2.3 High-Tc Superconductors -- 7.3 Theoretical Survey -- 7.3.1 The Cause of Superconductivity -- 7.3.2 The Bardeen-Cooper-Schrieffer Theory -- 7.3.3 Quantum Statistical Theory -- 7.4 Quantum Statistical Theory of Superconductivity -- 7.4.1 The Generalized BCS Hamiltonian -- 7.5 The Cooper Pair Problem -- 7.6 Moving Pairons -- 7.7 The BCS Ground State -- 7.7.1 The Reduced Generalized BCS Hamiltonian -- 7.7.2 The Ground State -- 7.8 Remarks -- 7.8.1 The Nature of the Reduced Hamiltonian -- 7.8.2 Binding Energy per Pairon -- 7.8.3 The Energy Gap -- 7.8.4 The Energy Gap Equation -- 7.8.5 Neutral Supercondensate -- 7.8.6 Cooper Pairs (Pairons) -- 7.8.7 Formation of a Supercondensate and Occurrence of Superconductors -- 7.8.8 Blurred Fermi Surface -- 7.9 Bose-Einstein Condensation in 2D -- 7.10 Discussion -- References -- 8 Metallic (or Superconducting) SWNTs -- 8.1 Introduction -- 8.2 Graphene -- 8.3 The Full Hamiltonian -- 8.4 Moving Pairons -- 8.5 The Bose-Einstein Condensation of Pairons -- 8.6 Superconductivity in Metallic SWNTs -- 8.7 High-Field Transport in Metallic SWNTs -- 8.8 Zero-Bias Anomaly -- 8.9 Temperature Behavior and Current Saturation -- 8.10 Summary -- References -- 9 Magnetic Susceptibility -- 9.1 Magnetogyric Ratio -- 9.2 Pauli Paramagnetism -- 9.3 The Landau States and Levels -- 9.4 Landau Diamagnetism -- References -- 10 Magnetic Oscillations.

10.1 Onsager's Formula -- 10.2 Statistical Mechanical Calculations: 3D -- 10.3 Statistical Mechanical Calculations: 2D -- 10.4 Anisotropic Magnetoresistance in Copper -- 10.4.1 Introduction -- 10.4.2 Theory -- 10.4.3 Discussion -- 10.5 Shubnikov-de Haas Oscillations -- References -- 11 Quantum Hall Effect -- 11.1 Experimental Facts -- 11.2 Theoretical Developments -- 11.3 Theory of the Quantum Hall Effect -- 11.3.1 Introduction -- 11.3.2 The Model -- 11.3.3 The Integer QHE -- 11.3.4 The Fractional QHE -- 11.4 Discussion -- References -- 12 Quantum Hall Effect in Graphene -- 12.1 Introduction -- References -- 13 Seebeck Coefficient in Multiwalled Carbon Nanotubes -- 13.1 Introduction -- 13.2 Classical Theory of the Seebeck Coefficient in a Metal -- 13.3 Quantum Theory of the Seebeck Coefficient in a Metal -- 13.4 Simple Applications -- 13.5 Graphene and Carbon Nanotubes -- 13.6 Conduction in Multiwalled Carbon Nanotubes -- 13.7 Seebeck Coefficient in Multiwalled Carbon Nanotubes -- References -- 14 Miscellaneous -- 14.1 Metal-Insulator Transition in Vanadium Dioxide -- 14.1.1 Introduction -- 14.2 Conduction Electrons in Graphite -- 14.3 Coronet Fermi Surface in Beryllium -- 14.4 Magnetic Oscillations in Bismuth -- References -- Appendix -- A.1 Second Quantization -- A.1.1 Boson Creation and Annihilation Operators -- A.1.2 Observables -- A.1.3 Fermion Creation and Annihilation Operators -- A.1.4 Heisenberg Equation of Motion -- A.2 Eigenvalue Problem and Equation-of-Motion Method -- A.2.1 Energy-Eigenvalue Problem in Second Quantization -- A.2.2 Energies of Quasielectrons (or "Electrons") at 0K -- A.3 Derivation of the Cooper Equation (7.34) -- A.4 Proof of (7.94) -- A.5 Statistical Weight for the Landau States -- A.5.1 The Three-Dimensional Case -- A.5.2 The Two-Dimensional Case -- A.6 Derivation of Formulas (11.16)-(11.18) -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.