IUKL Library
Normal view MARC view ISBD view

Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.

By: IAEA.
Material type: materialTypeLabelBookSeries: IAEA TECDOC Series: Publisher: Vienna : IAEA, 2022Copyright date: {copy}2022Edition: 1st ed.Description: 1 online resource (196 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9789201430212.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- 1. INTRODUCTION -- 1.1. BACKGROUND -- 1.2. OBJECTIVE -- 1.3. SCOPE -- 1.4. STRUCTURE -- 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS -- 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 2.2. DESIGN CONSIDERATIONS -- 2.3. NATIONAL PRACTICES -- 2.3.1. United States of America -- 2.3.2. France -- 2.3.3. Canada -- 2.3.4. Japan -- 2.3.5. Russian Federation -- 2.3.6. European Utility Requirements -- 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS -- 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS -- 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 3.1. FREE FIELD GROUND MOTION -- 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS -- 3.2.1. Soil for design basis and beyond design basis earthquakes -- 3.2.2. Structures and soil-structure interaction models -- 3.2.3. Decisions to be made in modelling soil, structures and foundations -- 3.3. UNCERTAINTIES -- 3.3.1. Aleatory uncertainties and epistemic uncertainties -- 3.3.2. Avoiding double counting of uncertainties -- 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies -- 4. SITE CONFIGURATION AND SOIL PROPERTIES -- 4.1. SITE CONFIGURATION AND CHARACTERIZATION -- 4.2. SOIL BEHAVIOUR -- 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR -- 4.3.1. Linear viscoelastic model -- 4.3.2. Nonlinear one-dimensional model -- 4.3.3. Nonlinear two and three-dimensional models -- 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS -- 4.5. PHYSICAL PARAMETERS -- 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS -- 4.6.1. Site instrumentation -- 4.6.2. Field investigations -- 4.6.3. Laboratory measurements -- 4.6.4. Comparison of field and laboratory tests -- 4.6.5. Summary of parameters and measurement techniques -- 4.7. CALIBRATION AND VALIDATION.
4.8. UNCERTAINTIES -- 4.9. SPATIAL VARIABILITY -- 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS -- 5.1. PSHA PERSPECTIVE -- 5.2. DSHA PERSPECTIVE -- 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS -- 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS -- 6.1. SEISMIC WAVE FIELDS -- 6.1.1. Perspective and spatial variability of ground motion -- 6.1.2. Spatial variability of ground motions -- 6.2. FREE FIELD GROUND MOTION DEVELOPMENT -- 6.3. RECORDED DATA -- 6.3.1. 3-D versus 1-D records/motions -- 6.3.1.1. Earthquake Ground Motions: Analytical Models -- 6.3.1.2. Earthquake Ground Motions: Numerical Models -- 6.3.2. Uncertainties -- 6.3.2.1. Uncertain sources -- 6.3.2.2. Uncertain path (rock) -- 6.3.2.3. Uncertain site (soil) -- 6.4. SEISMIC WAVE INCOHERENCE -- 6.4.1. General consideration -- 6.4.2. Incoherence modelling -- 6.4.2.1. Incoherence in 3-D -- 6.4.2.2. Theoretical Assumptions behind SVGM Models -- 6.4.2.3. Nuclear power plant - specific applications -- 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT -- 7.1. OVERVIEW -- 7.2. SITE RESPONSE ANALYSIS -- 7.2.1. Perspective -- 7.2.2. Foundation input response spectra -- 7.3. SITE RESPONSE ANALYSIS APPROACHES -- 7.3.1. Idealized site profile and wave propagation mechanisms -- 7.3.1.1. Convolution -- 7.3.1.2. Deconvolution -- 7.3.2. Non-idealized site profile and wave propagation mechanisms -- 7.3.3. Analysis models and modelling assumptions -- 7.3.3.1. D models -- 7.3.3.2. 3-D/3C versus 1-D/3C versus 1-D/1C seismic models -- 7.3.3.3. Propagation of higher frequency seismic motions -- 7.3.3.4. Material modelling and assumptions -- 7.3.3.5. 1-D/3C vs 1-D/2C vs 1-D/1C material behaviour and wave propagation models -- 7.4. STANDARD AND SITE SPECIFIC RESPONSE SPECTRA -- 7.4.1. Introduction -- 7.4.2. Standard response spectra.
7.4.3. Site specific response spectra -- 7.5. TIME HISTORIES -- 7.6. UNCERTAINTIES -- 7.7. LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD GROUND MOTIONS -- 8. METHODS AND MODELS FOR Soil-Structure Interaction ANALYSIS -- 8.1. BASIC STEPS FOR SOIL-STRUCTURE INTERACTION ANALYSIS -- 8.1.1. Preparatory activities -- 8.1.2. Site specific modelling -- 8.2. DIRECT METHODS -- 8.2.1. Discrete methods -- 8.2.1.1. Finite element method -- 8.2.1.2. Finite difference method -- 8.2.2. Linear finite element methods -- 8.2.3. Nonlinear finite element methods -- 8.2.4. Inelasticity, elasto-plasticity -- 8.2.5. Dynamics solution techniques -- 8.2.6. Energy dissipation -- 8.3. SUBSTRUCTURE METHODS -- 8.3.1. Principles -- 8.3.2. Rigid or flexible boundary method -- 8.3.3. The flexible volume method -- 8.3.4. The subtraction method -- 8.3.5. SASSI: System for analysis of soil-structure interaction -- 8.3.6. CLASSI: Soil-structure interaction - A linear continuum mechanic approach -- 8.4. SOIL-STRUCTURE INTERACTION COMPUTATIONAL MODELS -- 8.4.1. Soil/rock linear and nonlinear modelling -- 8.4.2. Drained and undrained modelling -- 8.4.2.1. Drained analysis -- 8.4.2.2. Undrained analysis -- 8.4.3. Soil material modelling: linear and nonlinear elastic models -- 8.4.3.1. Elastic-plastic models -- 8.4.4. Structural models, linear and nonlinear: shells, plates, walls, beams, trusses, solids -- 8.4.5. Contact modelling -- 8.4.6. Structures with a base isolation/dissipation system -- 8.4.7. Foundation models -- 8.4.7.1. Shallow and embedded foundation slabs and walls. -- 8.4.7.2. Deep foundations (piles, caissons and shaft foundations). -- 8.4.7.3. Deeply embedded foundations. -- 8.4.7.4. Foundation flexibility and base isolator/dissipator systems. -- 8.4.8. Deeply embedded structures -- 8.4.9. Buoyancy modelling -- 8.4.10. Domain boundaries.
8.4.11. Seismic load input -- 8.4.11.1. Domain reduction method -- 8.4.12. Structure-soil-structure interaction -- 8.4.12.1. Detailed methods and models of structure-soil-structure interaction -- 8.4.12.2. Simplified models: symmetry and anti-symmetry -- 8.4.13. Simplified models -- 8.5. PROBABILISTIC RESPONSE ANALYSIS -- 8.5.1. Overview -- 8.5.2. Simulations of SSI phenomena -- 8.5.2.1. Seismic methodology analysis chain with statistics (SMACS) -- 8.5.2.2. Monte Carlo approach to modelling and analysis -- 8.5.2.3. Random vibration theory -- 8.5.2.4. Stochastic finite element method -- 8.6. LIMITATION OF NUMERICAL MODELLING -- 9. Seismic RESPONSE ASPECTS FOR DESIGN AND ASSESSMENT OF NUCLEAR INSTALLATIONS -- 9.1. OVERALL MODELLING DECISIONS -- 9.2. SOIL MODELLING -- 9.3. FREE FIELD GROUND MOTIONS -- 9.4. SITE RESPONSE ANALYSIS - APPROACHES 1, 2, 3, AND 4 -- 9.4.1. 1-D model -- 9.4.1.1. Comparison EQL / nonlinear (cases 1a-1b) -- 9.4.1.2. Total vs effective stress analyses (cases 1a-2a) -- 9.4.1.3. Vertical motion -- 9.4.1.4. Lightly damped profiles -- 9.4.2. 2-D models -- 9.4.3. The 3 X 1C approach -- 9.4.4. Real 3C motions -- Realistic three component (3C) seismic motions that are comprised of body and surface waves can be used for SSI analysis provided that the full 3C wave field of seismic motions are available. Such full wave fields can be obtained using the analytic so... -- 9.5. SOIL-STRUCTURE INTERACTION MODELS -- 9.5.1. Structure -- 9.5.1.1. Multi-step vs single step soil-structure interaction analyses -- 9.5.1.2. Structure modelling requirements -- 9.5.1.3. Decision-making -- 9.5.2. Foundations -- 9.5.2.1. Foundation modelling for conventional foundation/structure systems -- 9.5.2.2. Simplified models for conventional foundation/structure systems -- 9.5.2.3. Limitations of the substructure method -- 9.5.2.4. Deep foundations.
9.5.2.5. Embedded foundation -- 9.5.2.6. Deeply embedded foundations (SMRs) -- 9.5.3. Analysis methods -- 9.5.3.1. Substructure methods -- 9.5.3.2. Direct methods: linear, nonlinear (deeply embedded SMR, deep foundations, sliding, uplift) -- The direct method analyses the idealized soil-structure system in a single step. The direct method is applicable to linear and equivalent linear idealizations and is needed for nonlinear SSI analyses. This contrasts with the substructure method that d... -- 9.5.4. Hierarchical modelling and simulation of an inelastic soil-structure interaction system -- 9.6. INCOHERENT MOTIONS -- 9.6.1. Case study of the effects of ground motion incoherence on a nuclear power plant -- 9.7. UNCERTINITIES AND SENTIVITIY STUDIES -- 9.7.1. Ground motion -- 9.7.1.1. Specification of design basis earthquake and beyond design basis earthquake ground motion -- 9.7.1.2. Variabilities in the site specific ground motion -- 9.7.2. Soil -- 9.7.3. Structure uncertainties -- 9.7.4. Verification and validation of models -- 9.8. STRUCTURAL RESPONSE QUANTITIES -- 9.8.1. Deterministic analyses -- 9.8.1.1. Design forces, displacements, and stresses -- 9.8.1.2. Seismic input to subsystems -- 9.8.2. Probabilistic analyses -- 9.8.2.1. Step-by-step probabilistic analyses -- 9.8.2.2. Epistemic uncertainty and aleatory uncertainty -- 10. Available Software FOR Soil-Structure Interaction ANALYSIS -- 10.1. EXAMPLES ON SOFTWARE FOR USE IN SOIL-STRUCTURE INTERACTION ANALYSES FOR NUCLEAR INSTALLATIONS -- 10.1.1. Available programs for soil-structure interaction analyses -- 10.2. VERIFICATION AND VALIDATION OF SSI SOFTWARE -- 10.2.1. introduction -- 10.2.2. Importance of verification and validation -- 10.2.3. Detailed look at verification and validation -- 10.2.4. Examples of verification and validation -- REFERENCES.
CONTRIBUTORS TO DRAFTING AND REVIEW.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=6891126 1 Available
Total holds: 0

Intro -- 1. INTRODUCTION -- 1.1. BACKGROUND -- 1.2. OBJECTIVE -- 1.3. SCOPE -- 1.4. STRUCTURE -- 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS -- 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 2.2. DESIGN CONSIDERATIONS -- 2.3. NATIONAL PRACTICES -- 2.3.1. United States of America -- 2.3.2. France -- 2.3.3. Canada -- 2.3.4. Japan -- 2.3.5. Russian Federation -- 2.3.6. European Utility Requirements -- 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS -- 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS -- 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 3.1. FREE FIELD GROUND MOTION -- 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS -- 3.2.1. Soil for design basis and beyond design basis earthquakes -- 3.2.2. Structures and soil-structure interaction models -- 3.2.3. Decisions to be made in modelling soil, structures and foundations -- 3.3. UNCERTAINTIES -- 3.3.1. Aleatory uncertainties and epistemic uncertainties -- 3.3.2. Avoiding double counting of uncertainties -- 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies -- 4. SITE CONFIGURATION AND SOIL PROPERTIES -- 4.1. SITE CONFIGURATION AND CHARACTERIZATION -- 4.2. SOIL BEHAVIOUR -- 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR -- 4.3.1. Linear viscoelastic model -- 4.3.2. Nonlinear one-dimensional model -- 4.3.3. Nonlinear two and three-dimensional models -- 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS -- 4.5. PHYSICAL PARAMETERS -- 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS -- 4.6.1. Site instrumentation -- 4.6.2. Field investigations -- 4.6.3. Laboratory measurements -- 4.6.4. Comparison of field and laboratory tests -- 4.6.5. Summary of parameters and measurement techniques -- 4.7. CALIBRATION AND VALIDATION.

4.8. UNCERTAINTIES -- 4.9. SPATIAL VARIABILITY -- 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS -- 5.1. PSHA PERSPECTIVE -- 5.2. DSHA PERSPECTIVE -- 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS -- 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS -- 6.1. SEISMIC WAVE FIELDS -- 6.1.1. Perspective and spatial variability of ground motion -- 6.1.2. Spatial variability of ground motions -- 6.2. FREE FIELD GROUND MOTION DEVELOPMENT -- 6.3. RECORDED DATA -- 6.3.1. 3-D versus 1-D records/motions -- 6.3.1.1. Earthquake Ground Motions: Analytical Models -- 6.3.1.2. Earthquake Ground Motions: Numerical Models -- 6.3.2. Uncertainties -- 6.3.2.1. Uncertain sources -- 6.3.2.2. Uncertain path (rock) -- 6.3.2.3. Uncertain site (soil) -- 6.4. SEISMIC WAVE INCOHERENCE -- 6.4.1. General consideration -- 6.4.2. Incoherence modelling -- 6.4.2.1. Incoherence in 3-D -- 6.4.2.2. Theoretical Assumptions behind SVGM Models -- 6.4.2.3. Nuclear power plant - specific applications -- 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT -- 7.1. OVERVIEW -- 7.2. SITE RESPONSE ANALYSIS -- 7.2.1. Perspective -- 7.2.2. Foundation input response spectra -- 7.3. SITE RESPONSE ANALYSIS APPROACHES -- 7.3.1. Idealized site profile and wave propagation mechanisms -- 7.3.1.1. Convolution -- 7.3.1.2. Deconvolution -- 7.3.2. Non-idealized site profile and wave propagation mechanisms -- 7.3.3. Analysis models and modelling assumptions -- 7.3.3.1. D models -- 7.3.3.2. 3-D/3C versus 1-D/3C versus 1-D/1C seismic models -- 7.3.3.3. Propagation of higher frequency seismic motions -- 7.3.3.4. Material modelling and assumptions -- 7.3.3.5. 1-D/3C vs 1-D/2C vs 1-D/1C material behaviour and wave propagation models -- 7.4. STANDARD AND SITE SPECIFIC RESPONSE SPECTRA -- 7.4.1. Introduction -- 7.4.2. Standard response spectra.

7.4.3. Site specific response spectra -- 7.5. TIME HISTORIES -- 7.6. UNCERTAINTIES -- 7.7. LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD GROUND MOTIONS -- 8. METHODS AND MODELS FOR Soil-Structure Interaction ANALYSIS -- 8.1. BASIC STEPS FOR SOIL-STRUCTURE INTERACTION ANALYSIS -- 8.1.1. Preparatory activities -- 8.1.2. Site specific modelling -- 8.2. DIRECT METHODS -- 8.2.1. Discrete methods -- 8.2.1.1. Finite element method -- 8.2.1.2. Finite difference method -- 8.2.2. Linear finite element methods -- 8.2.3. Nonlinear finite element methods -- 8.2.4. Inelasticity, elasto-plasticity -- 8.2.5. Dynamics solution techniques -- 8.2.6. Energy dissipation -- 8.3. SUBSTRUCTURE METHODS -- 8.3.1. Principles -- 8.3.2. Rigid or flexible boundary method -- 8.3.3. The flexible volume method -- 8.3.4. The subtraction method -- 8.3.5. SASSI: System for analysis of soil-structure interaction -- 8.3.6. CLASSI: Soil-structure interaction - A linear continuum mechanic approach -- 8.4. SOIL-STRUCTURE INTERACTION COMPUTATIONAL MODELS -- 8.4.1. Soil/rock linear and nonlinear modelling -- 8.4.2. Drained and undrained modelling -- 8.4.2.1. Drained analysis -- 8.4.2.2. Undrained analysis -- 8.4.3. Soil material modelling: linear and nonlinear elastic models -- 8.4.3.1. Elastic-plastic models -- 8.4.4. Structural models, linear and nonlinear: shells, plates, walls, beams, trusses, solids -- 8.4.5. Contact modelling -- 8.4.6. Structures with a base isolation/dissipation system -- 8.4.7. Foundation models -- 8.4.7.1. Shallow and embedded foundation slabs and walls. -- 8.4.7.2. Deep foundations (piles, caissons and shaft foundations). -- 8.4.7.3. Deeply embedded foundations. -- 8.4.7.4. Foundation flexibility and base isolator/dissipator systems. -- 8.4.8. Deeply embedded structures -- 8.4.9. Buoyancy modelling -- 8.4.10. Domain boundaries.

8.4.11. Seismic load input -- 8.4.11.1. Domain reduction method -- 8.4.12. Structure-soil-structure interaction -- 8.4.12.1. Detailed methods and models of structure-soil-structure interaction -- 8.4.12.2. Simplified models: symmetry and anti-symmetry -- 8.4.13. Simplified models -- 8.5. PROBABILISTIC RESPONSE ANALYSIS -- 8.5.1. Overview -- 8.5.2. Simulations of SSI phenomena -- 8.5.2.1. Seismic methodology analysis chain with statistics (SMACS) -- 8.5.2.2. Monte Carlo approach to modelling and analysis -- 8.5.2.3. Random vibration theory -- 8.5.2.4. Stochastic finite element method -- 8.6. LIMITATION OF NUMERICAL MODELLING -- 9. Seismic RESPONSE ASPECTS FOR DESIGN AND ASSESSMENT OF NUCLEAR INSTALLATIONS -- 9.1. OVERALL MODELLING DECISIONS -- 9.2. SOIL MODELLING -- 9.3. FREE FIELD GROUND MOTIONS -- 9.4. SITE RESPONSE ANALYSIS - APPROACHES 1, 2, 3, AND 4 -- 9.4.1. 1-D model -- 9.4.1.1. Comparison EQL / nonlinear (cases 1a-1b) -- 9.4.1.2. Total vs effective stress analyses (cases 1a-2a) -- 9.4.1.3. Vertical motion -- 9.4.1.4. Lightly damped profiles -- 9.4.2. 2-D models -- 9.4.3. The 3 X 1C approach -- 9.4.4. Real 3C motions -- Realistic three component (3C) seismic motions that are comprised of body and surface waves can be used for SSI analysis provided that the full 3C wave field of seismic motions are available. Such full wave fields can be obtained using the analytic so... -- 9.5. SOIL-STRUCTURE INTERACTION MODELS -- 9.5.1. Structure -- 9.5.1.1. Multi-step vs single step soil-structure interaction analyses -- 9.5.1.2. Structure modelling requirements -- 9.5.1.3. Decision-making -- 9.5.2. Foundations -- 9.5.2.1. Foundation modelling for conventional foundation/structure systems -- 9.5.2.2. Simplified models for conventional foundation/structure systems -- 9.5.2.3. Limitations of the substructure method -- 9.5.2.4. Deep foundations.

9.5.2.5. Embedded foundation -- 9.5.2.6. Deeply embedded foundations (SMRs) -- 9.5.3. Analysis methods -- 9.5.3.1. Substructure methods -- 9.5.3.2. Direct methods: linear, nonlinear (deeply embedded SMR, deep foundations, sliding, uplift) -- The direct method analyses the idealized soil-structure system in a single step. The direct method is applicable to linear and equivalent linear idealizations and is needed for nonlinear SSI analyses. This contrasts with the substructure method that d... -- 9.5.4. Hierarchical modelling and simulation of an inelastic soil-structure interaction system -- 9.6. INCOHERENT MOTIONS -- 9.6.1. Case study of the effects of ground motion incoherence on a nuclear power plant -- 9.7. UNCERTINITIES AND SENTIVITIY STUDIES -- 9.7.1. Ground motion -- 9.7.1.1. Specification of design basis earthquake and beyond design basis earthquake ground motion -- 9.7.1.2. Variabilities in the site specific ground motion -- 9.7.2. Soil -- 9.7.3. Structure uncertainties -- 9.7.4. Verification and validation of models -- 9.8. STRUCTURAL RESPONSE QUANTITIES -- 9.8.1. Deterministic analyses -- 9.8.1.1. Design forces, displacements, and stresses -- 9.8.1.2. Seismic input to subsystems -- 9.8.2. Probabilistic analyses -- 9.8.2.1. Step-by-step probabilistic analyses -- 9.8.2.2. Epistemic uncertainty and aleatory uncertainty -- 10. Available Software FOR Soil-Structure Interaction ANALYSIS -- 10.1. EXAMPLES ON SOFTWARE FOR USE IN SOIL-STRUCTURE INTERACTION ANALYSES FOR NUCLEAR INSTALLATIONS -- 10.1.1. Available programs for soil-structure interaction analyses -- 10.2. VERIFICATION AND VALIDATION OF SSI SOFTWARE -- 10.2.1. introduction -- 10.2.2. Importance of verification and validation -- 10.2.3. Detailed look at verification and validation -- 10.2.4. Examples of verification and validation -- REFERENCES.

CONTRIBUTORS TO DRAFTING AND REVIEW.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.