IUKL Library
Normal view MARC view ISBD view

60 Years Of Cern Experiments And Discoveries.

By: Schopper, Herwig.
Contributor(s): Lella, Luigi Di.
Material type: materialTypeLabelBookSeries: Advanced Series On Directions In High Energy Physics: Publisher: Singapore : World Scientific Publishing Company, 2015Copyright date: �2015Edition: 1st ed.Description: 1 online resource (450 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9789814644150.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Contents -- Foreword -- Preface -- 1. The Discovery of the Higgs Boson at the LHC -- 1. Introduction -- 2. The ATLAS and CMS Experiments -- 2.1. The ATLAS detector -- 2.2. The CMS detector -- 2.3. Installation and commissioning -- 3. Trigger, Computing, and Early Operation -- 3.1. Trigger and computing -- 3.2. Standard model measurements to demonstrate the performance -- 4. The Standard Model Higgs Boson and the LHC -- 4.1. Discovery and properties of the Higgs boson -- 4.2. Results from the 2011 and partial 2012 datasets -- 4.2.1. The H (Sdd(B decay mode -- 4.2.2. The H ZZ 4l decay mode -- 4.2.3. Combining the results -- 4.3. Results from the full 2011 and 2012 data set -- 4.3.1. Decays to bosons: The H (Sdd(B, the H ZZ 4l and H WW 2l2(Sp(B decay modes -- 4.3.2. Decays to fermions: The H (Sxx(B and the H bb decay modes -- 4.4. The ATLAS and CMS combinations of results from Run 1 -- 4.4.1. The mass of the Higgs boson -- 4.4.2. Significance of the observed excess -- 4.4.3. Compatibility of the observed state with the SM Higgs boson hypothesis: Signal strength -- 4.4.4. Couplings of the Higgs boson -- 4.4.5. Spinandparity -- 5. Conclusions and Outlook -- Acknowledgments -- References -- 2. Precision Physics with Heavy-Flavoured Hadrons -- 1. Introduction -- 2. An Historical Perspective -- 2.1. The origin of the Kobayashi-Maskawa mechanism -- 2.2. The rise of B physics -- 2.3. The LHC era -- 3. The CKM Matrix -- 3.1. Definition -- 3.2. Standard parametrisation -- 3.3. Wolfenstein parametrisation -- 3.4. The unitarity triangle -- 3.5. Phenomenology of CP violation -- 3.6. Experimental determination of the unitarity triangle -- 4. Overview of Beauty Physics at the LHC -- 4.1. CP violation -- 4.2. Rare electroweak decays -- 4.3. Observation of the B0s (So(B+(So−(B decay -- 5. Conclusions -- References.
3. Toward the Limits of Matter: Ultra-relativistic Nuclear Collisions at CERN -- 1. Strongly Interacting Matter -- 2. QCD Matter Research: Gaining Confidence -- 3. Hot QCD Matter Research at CERN -- 3.1. The acceleration of heavy nuclei at CERN -- 3.2. The CERN SPS experiments and their physics -- 4. Results at the Millenium -- 4.1. Fireball energy density -- 4.2. Fireball temperature -- 4.3. Hadrons form at T = 160 � 10 MeV: Close to lattice QCD prediction -- 4.4. Strange baryon and antibaryon production is enhanced -- 4.5. Charmonium (J/(S\(B) suppression reveals QCD plasma formation -- 4.6. QCD chiral symmetry restoration: Hadrons melt near Tc -- 4.7. The fireball matter exhibits collective hydrodynamic flow -- 4.8. Summary of SPS results and interlude at RHIC -- 5. Heavy Ion Physics at the LHC -- 5.1. Hadron formation -- 5.2. Elliptic flow -- 5.3. Jet quenching -- 5.4. Quarkonium suppression -- 5.5. Discoveries -- 6. Conclusions -- References -- 4. The Measurement of the Number of Light Neutrino Species at LEP -- 1. Introduction -- 2. Theoretical Principles -- 2.1. The width of the Z boson -- 2.2. Experimental observables -- 2.3. Sensitivity to N(Sp(B -- 3. Experimental Measurement -- 3.1. Detection of Z-boson decays -- 3.2. Data sample -- 3.3. Measurement of cross-sections and asymmetries -- 3.4. Measurement of luminosity -- 3.5. Results -- 4. Direct Measurement of N(Sp(B -- 5. Conclusions -- References -- 5. Precision Experiments at LEP -- 1. Introduction -- 2. The Electron-Positron Colliders -- 3. The Four LEP Detectors -- 4. Quantum Corrections to the W and Z Boson Masses -- 5. SM Cross-Sections, Asymmetries and Branching Ratios -- 6. LEP I Electroweak Results -- 7. Constraints on the SM -- 7.1. Constraints on the SM after the Higgs discovery -- 8. LEP II Electroweak Results -- 9. QCD Results -- 9.1. The gluon self-interaction.
9.2. Running of the b quark mass -- 9.3. Determination of the strong coupling constant -- 10. Gauge Coupling Unification -- 11. Summary -- Acknowledgments -- References -- 6. The Discovery of the W and Z Particles -- 1. Introduction -- 2. The CERN Proton-Antiproton Collider -- 3. The Experiments -- 3.1. The UA1 experiment -- 3.2. The UA2 detector -- 4. The Discovery of the W and Z Bosons -- 4.1. Discovery of the W boson -- 4.2. Discovery of the Z boson -- 5. Physics Results from Subsequent Collider Runs -- 5.1. W and Z masses and production cross-sections -- 5.2. Charge asymmetry in the decay W e (Sp(B -- 5.3. A test of QCD: The W boson transverse momentum -- 5.4. Hadronic decays of the W and Z bosons -- 5.5. Precision measurement of the W to Z mass ratio -- 6. Conclusions -- References -- 7. The Discovery of Weak Neutral Currents -- 1. Preface -- 2. The Beginning of High Energy Neutrino Physics at CERN -- 2.1. Status of weak interactions at the end of the 1950s -- 2.2. The first neutrino experiment at CERN -- 2.3. Early searches for weak neutral currents -- 3. The Discovery of Weak Neutral Currents -- 3.1. The bubble chamber Gargamelle -- 3.2. The challenge -- 3.3. Status in March 1973 -- 3.4. The neutron background -- 3.5. The hot autumn -- 3.6. The proton experiment -- 3.7. Confirmations -- 3.8. Conclusion -- Acknowledgments -- References -- 8. Highlights from High Energy Neutrino Experiments at CERN -- 1. Introduction -- 2. Early Gargamelle Results on the Quark Parton Model -- 3. Neutrino Beams and Experiments -- 4. Nuclear Structure and Quark Parton Model -- 5. Electroweak Measurements -- 5.1. Weak mixing angle -- 5.2. Charm production and GIM mechanism -- 6. QCD and Structure Functions -- 7. Epilogue -- References -- 9. The Discovery of Direct CP Violation -- 1. Introduction -- 1.1. The early days of CP violation -- 1.2. Basic phenomenology.
1.3. Experimental situation on / in the 80s-90s -- 1.4. The main challenges in the measurement of / -- 2. First Generation: The NA31 Beams and Detectors -- 2.1. The K0L and K0S beams -- 2.2. The NA31 experimental layout -- 2.3. Measuring the neutral decays: Liquid argon calorimeter -- 2.4. Measuring the charged mode -- 2.5. Trigger, online background rejection and data acquisition -- 3. The NA31 Analysis and Result -- 3.1. Analysis -- 3.2. The NA31 results -- 3.3. Phase measurement -- 4. The Second Generation: The NA48 Beams and Detectors -- 4.1. The NA48 beams -- 4.2. The tagger -- 4.3. The liquid Krypton calorimeter -- 4.4. The spectrometer -- 4.5. The NA48 trigger and data acquisition systems -- 4.6. The NA48 analysis -- 4.6.1. The neutral decays -- 4.6.2. The charged decays -- 4.6.3. Corrections: Tagging inefficiency and dilution -- 4.6.4. Corrections: Beam activity, scattering and acceptance -- 4.7. NA48 results -- 5. Concluding Remarks -- 5.1. The world average of / -- 5.2. CP violation in kaons: A portal to heavy meson systems -- 5.3. CP violation in kaons: A portal for theory -- 5.4. The legacy of CERN kaon experiments -- Acknowledgments -- References -- 10. Measurements of Discrete Symmetries in the Neutral Kaon System with the CPLEAR (PS195) Experiment -- 1. The Low Energy Antiproton Ring -- 2. The CPLEAR Experimental Method -- 3. The CPLEAR Detector -- 4. Phenomenology of the Neutral Kaon System -- 4.1. Time evolution -- 4.2. Discrete symmetries -- 4.3. Measurementof CP violation in the decay to (Ss(B+(Ss−(B -- 4.4. Direct measurements of the T and CPT violation parameters -- 4.5. T and CPT parameters constrained by the unitarity relation -- 4.6. Measurements related to basic principles -- 4.6.1. Probing a possible loss of QM coherence -- 4.6.2. Testing the non-separability of the K0K0 wave function.
4.6.3. Test of the equivalence principle for particles and antiparticles -- 5. Conclusion -- References -- 11. An ISR Discovery: The Rise of the Proton-Proton Cross-Section -- 1. Hadron-Hadron Cross-Sections at the Beginning of the 1970s -- 2. The Theoretical Framework -- 3. Three ISR Proposals -- 4. First Results on Elastic Scattering and Total Cross-Sections -- 5. Second-Generation Experiments -- 6. Overlap Integrals in the ISR Energy Range -- 7. The ISR "Small-Angle Physics" Seen from Higher Energies -- 8. Concluding Remarks -- References -- 12. Deep Inelastic Scattering with the SPS Muon Beam -- 1. Introduction -- 2. Beam and Detectors -- 2.1. Early detectors -- 2.2. TheCOMPASSdetector -- 2.3. The COMPASS polarised target -- 3. Unpolarised Nucleon Structure Functions -- 3.1. Cross-section and structure functions -- 3.2. Scaling violations -- 3.3. Tests of perturbative QCD -- 3.4. Measurement of the strong coupling constant -- 4. Nucleon Spin and Polarised Deep Inelastic Scattering -- 4.1. Longitudinal spin -- 4.2. Experimental method of the CERN experiments -- 4.3. Experimental results -- 4.3.1. Sumrules -- 4.3.2. Structure functions and quark helicity distributions -- 4.3.3. Gluon helicity distributions -- 4.3.4. Global QCD analyses -- 4.4. Transverse spin -- 4.4.1. Transversity -- 4.4.2. Transverse-momentum-dependent parton distributions -- 4.4.3. Generalised parton distributions -- 5. Conclusions -- References -- 13. Revealing Partons in Hadrons: From the ISR to the SPS Collider -- 1. Preamble -- 2. The ISR as a Gluon Collider -- 2.1. Introduction -- 2.2. The main milestones -- 2.3. What about the ISR? -- 2.4. Large transverse momentum: Inclusive production data -- 2.5. Event structure and jets -- 2.6. Direct photons -- 2.7. The ISR legacy -- 3. Jets at the SPS Collider -- 3.1. Introduction -- 3.2. Evidence for jet production.
3.3. Theoretical interpretation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Intro -- Contents -- Foreword -- Preface -- 1. The Discovery of the Higgs Boson at the LHC -- 1. Introduction -- 2. The ATLAS and CMS Experiments -- 2.1. The ATLAS detector -- 2.2. The CMS detector -- 2.3. Installation and commissioning -- 3. Trigger, Computing, and Early Operation -- 3.1. Trigger and computing -- 3.2. Standard model measurements to demonstrate the performance -- 4. The Standard Model Higgs Boson and the LHC -- 4.1. Discovery and properties of the Higgs boson -- 4.2. Results from the 2011 and partial 2012 datasets -- 4.2.1. The H (Sdd(B decay mode -- 4.2.2. The H ZZ 4l decay mode -- 4.2.3. Combining the results -- 4.3. Results from the full 2011 and 2012 data set -- 4.3.1. Decays to bosons: The H (Sdd(B, the H ZZ 4l and H WW 2l2(Sp(B decay modes -- 4.3.2. Decays to fermions: The H (Sxx(B and the H bb decay modes -- 4.4. The ATLAS and CMS combinations of results from Run 1 -- 4.4.1. The mass of the Higgs boson -- 4.4.2. Significance of the observed excess -- 4.4.3. Compatibility of the observed state with the SM Higgs boson hypothesis: Signal strength -- 4.4.4. Couplings of the Higgs boson -- 4.4.5. Spinandparity -- 5. Conclusions and Outlook -- Acknowledgments -- References -- 2. Precision Physics with Heavy-Flavoured Hadrons -- 1. Introduction -- 2. An Historical Perspective -- 2.1. The origin of the Kobayashi-Maskawa mechanism -- 2.2. The rise of B physics -- 2.3. The LHC era -- 3. The CKM Matrix -- 3.1. Definition -- 3.2. Standard parametrisation -- 3.3. Wolfenstein parametrisation -- 3.4. The unitarity triangle -- 3.5. Phenomenology of CP violation -- 3.6. Experimental determination of the unitarity triangle -- 4. Overview of Beauty Physics at the LHC -- 4.1. CP violation -- 4.2. Rare electroweak decays -- 4.3. Observation of the B0s (So(B+(So−(B decay -- 5. Conclusions -- References.

3. Toward the Limits of Matter: Ultra-relativistic Nuclear Collisions at CERN -- 1. Strongly Interacting Matter -- 2. QCD Matter Research: Gaining Confidence -- 3. Hot QCD Matter Research at CERN -- 3.1. The acceleration of heavy nuclei at CERN -- 3.2. The CERN SPS experiments and their physics -- 4. Results at the Millenium -- 4.1. Fireball energy density -- 4.2. Fireball temperature -- 4.3. Hadrons form at T = 160 � 10 MeV: Close to lattice QCD prediction -- 4.4. Strange baryon and antibaryon production is enhanced -- 4.5. Charmonium (J/(S\(B) suppression reveals QCD plasma formation -- 4.6. QCD chiral symmetry restoration: Hadrons melt near Tc -- 4.7. The fireball matter exhibits collective hydrodynamic flow -- 4.8. Summary of SPS results and interlude at RHIC -- 5. Heavy Ion Physics at the LHC -- 5.1. Hadron formation -- 5.2. Elliptic flow -- 5.3. Jet quenching -- 5.4. Quarkonium suppression -- 5.5. Discoveries -- 6. Conclusions -- References -- 4. The Measurement of the Number of Light Neutrino Species at LEP -- 1. Introduction -- 2. Theoretical Principles -- 2.1. The width of the Z boson -- 2.2. Experimental observables -- 2.3. Sensitivity to N(Sp(B -- 3. Experimental Measurement -- 3.1. Detection of Z-boson decays -- 3.2. Data sample -- 3.3. Measurement of cross-sections and asymmetries -- 3.4. Measurement of luminosity -- 3.5. Results -- 4. Direct Measurement of N(Sp(B -- 5. Conclusions -- References -- 5. Precision Experiments at LEP -- 1. Introduction -- 2. The Electron-Positron Colliders -- 3. The Four LEP Detectors -- 4. Quantum Corrections to the W and Z Boson Masses -- 5. SM Cross-Sections, Asymmetries and Branching Ratios -- 6. LEP I Electroweak Results -- 7. Constraints on the SM -- 7.1. Constraints on the SM after the Higgs discovery -- 8. LEP II Electroweak Results -- 9. QCD Results -- 9.1. The gluon self-interaction.

9.2. Running of the b quark mass -- 9.3. Determination of the strong coupling constant -- 10. Gauge Coupling Unification -- 11. Summary -- Acknowledgments -- References -- 6. The Discovery of the W and Z Particles -- 1. Introduction -- 2. The CERN Proton-Antiproton Collider -- 3. The Experiments -- 3.1. The UA1 experiment -- 3.2. The UA2 detector -- 4. The Discovery of the W and Z Bosons -- 4.1. Discovery of the W boson -- 4.2. Discovery of the Z boson -- 5. Physics Results from Subsequent Collider Runs -- 5.1. W and Z masses and production cross-sections -- 5.2. Charge asymmetry in the decay W e (Sp(B -- 5.3. A test of QCD: The W boson transverse momentum -- 5.4. Hadronic decays of the W and Z bosons -- 5.5. Precision measurement of the W to Z mass ratio -- 6. Conclusions -- References -- 7. The Discovery of Weak Neutral Currents -- 1. Preface -- 2. The Beginning of High Energy Neutrino Physics at CERN -- 2.1. Status of weak interactions at the end of the 1950s -- 2.2. The first neutrino experiment at CERN -- 2.3. Early searches for weak neutral currents -- 3. The Discovery of Weak Neutral Currents -- 3.1. The bubble chamber Gargamelle -- 3.2. The challenge -- 3.3. Status in March 1973 -- 3.4. The neutron background -- 3.5. The hot autumn -- 3.6. The proton experiment -- 3.7. Confirmations -- 3.8. Conclusion -- Acknowledgments -- References -- 8. Highlights from High Energy Neutrino Experiments at CERN -- 1. Introduction -- 2. Early Gargamelle Results on the Quark Parton Model -- 3. Neutrino Beams and Experiments -- 4. Nuclear Structure and Quark Parton Model -- 5. Electroweak Measurements -- 5.1. Weak mixing angle -- 5.2. Charm production and GIM mechanism -- 6. QCD and Structure Functions -- 7. Epilogue -- References -- 9. The Discovery of Direct CP Violation -- 1. Introduction -- 1.1. The early days of CP violation -- 1.2. Basic phenomenology.

1.3. Experimental situation on / in the 80s-90s -- 1.4. The main challenges in the measurement of / -- 2. First Generation: The NA31 Beams and Detectors -- 2.1. The K0L and K0S beams -- 2.2. The NA31 experimental layout -- 2.3. Measuring the neutral decays: Liquid argon calorimeter -- 2.4. Measuring the charged mode -- 2.5. Trigger, online background rejection and data acquisition -- 3. The NA31 Analysis and Result -- 3.1. Analysis -- 3.2. The NA31 results -- 3.3. Phase measurement -- 4. The Second Generation: The NA48 Beams and Detectors -- 4.1. The NA48 beams -- 4.2. The tagger -- 4.3. The liquid Krypton calorimeter -- 4.4. The spectrometer -- 4.5. The NA48 trigger and data acquisition systems -- 4.6. The NA48 analysis -- 4.6.1. The neutral decays -- 4.6.2. The charged decays -- 4.6.3. Corrections: Tagging inefficiency and dilution -- 4.6.4. Corrections: Beam activity, scattering and acceptance -- 4.7. NA48 results -- 5. Concluding Remarks -- 5.1. The world average of / -- 5.2. CP violation in kaons: A portal to heavy meson systems -- 5.3. CP violation in kaons: A portal for theory -- 5.4. The legacy of CERN kaon experiments -- Acknowledgments -- References -- 10. Measurements of Discrete Symmetries in the Neutral Kaon System with the CPLEAR (PS195) Experiment -- 1. The Low Energy Antiproton Ring -- 2. The CPLEAR Experimental Method -- 3. The CPLEAR Detector -- 4. Phenomenology of the Neutral Kaon System -- 4.1. Time evolution -- 4.2. Discrete symmetries -- 4.3. Measurementof CP violation in the decay to (Ss(B+(Ss−(B -- 4.4. Direct measurements of the T and CPT violation parameters -- 4.5. T and CPT parameters constrained by the unitarity relation -- 4.6. Measurements related to basic principles -- 4.6.1. Probing a possible loss of QM coherence -- 4.6.2. Testing the non-separability of the K0K0 wave function.

4.6.3. Test of the equivalence principle for particles and antiparticles -- 5. Conclusion -- References -- 11. An ISR Discovery: The Rise of the Proton-Proton Cross-Section -- 1. Hadron-Hadron Cross-Sections at the Beginning of the 1970s -- 2. The Theoretical Framework -- 3. Three ISR Proposals -- 4. First Results on Elastic Scattering and Total Cross-Sections -- 5. Second-Generation Experiments -- 6. Overlap Integrals in the ISR Energy Range -- 7. The ISR "Small-Angle Physics" Seen from Higher Energies -- 8. Concluding Remarks -- References -- 12. Deep Inelastic Scattering with the SPS Muon Beam -- 1. Introduction -- 2. Beam and Detectors -- 2.1. Early detectors -- 2.2. TheCOMPASSdetector -- 2.3. The COMPASS polarised target -- 3. Unpolarised Nucleon Structure Functions -- 3.1. Cross-section and structure functions -- 3.2. Scaling violations -- 3.3. Tests of perturbative QCD -- 3.4. Measurement of the strong coupling constant -- 4. Nucleon Spin and Polarised Deep Inelastic Scattering -- 4.1. Longitudinal spin -- 4.2. Experimental method of the CERN experiments -- 4.3. Experimental results -- 4.3.1. Sumrules -- 4.3.2. Structure functions and quark helicity distributions -- 4.3.3. Gluon helicity distributions -- 4.3.4. Global QCD analyses -- 4.4. Transverse spin -- 4.4.1. Transversity -- 4.4.2. Transverse-momentum-dependent parton distributions -- 4.4.3. Generalised parton distributions -- 5. Conclusions -- References -- 13. Revealing Partons in Hadrons: From the ISR to the SPS Collider -- 1. Preamble -- 2. The ISR as a Gluon Collider -- 2.1. Introduction -- 2.2. The main milestones -- 2.3. What about the ISR? -- 2.4. Large transverse momentum: Inclusive production data -- 2.5. Event structure and jets -- 2.6. Direct photons -- 2.7. The ISR legacy -- 3. Jets at the SPS Collider -- 3.1. Introduction -- 3.2. Evidence for jet production.

3.3. Theoretical interpretation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.