IUKL Library
Normal view MARC view ISBD view

Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.

By: Maiani, Luciano.
Contributor(s): Rolandi, Luigi.
Material type: materialTypeLabelBookSeries: Advanced Series On Directions In High Energy Physics: Publisher: Singapore : World Scientific Publishing Company, 2016Copyright date: �2016Edition: 1st ed.Description: 1 online resource (483 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9789814733519.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in (Sb(B-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model.
5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of (Sa(Bs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data.
5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 (Sk(B eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark.
3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + Q�Q, with Q = c, b -- 4.3. V + tt� -- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview.
2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → (Sdd(B -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +(Sp(B −� -- 3.4. Searches in H → (Sx(B+(Sx−(B and in H → b�b -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → (Ss(B+(Spp(B, K0L→ (Ss(B0(Spp(B -- 3.2. B0d→ K∗0(So(B+(So−(B -- 3.3. B0(d,s)→ (So(B+(So−(B -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos.
1.2. Where do neutrinos come from?.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in (Sb(B-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model.

5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of (Sa(Bs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data.

5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 (Sk(B eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark.

3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + Q�Q, with Q = c, b -- 4.3. V + tt� -- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview.

2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → (Sdd(B -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +(Sp(B −� -- 3.4. Searches in H → (Sx(B+(Sx−(B and in H → b�b -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → (Ss(B+(Spp(B, K0L→ (Ss(B0(Spp(B -- 3.2. B0d→ K∗0(So(B+(So−(B -- 3.3. B0(d,s)→ (So(B+(So−(B -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos.

1.2. Where do neutrinos come from?.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.