IUKL Library
Normal view MARC view ISBD view

Ernst Denert Award for Software Engineering 2020 : Practice Meets Foundations.

By: Felderer, Michael.
Contributor(s): Hasselbring, Wilhelm | Koziolek, Heiko | Matthes, Florian | Prechelt, Lutz | Reussner, Ralf | Rumpe, Bernhard | Schaefer, Ina.
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing AG, 2022Copyright date: �2022Edition: 1st ed.Description: 1 online resource (290 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9783030831288.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Contents -- Ernst Denert Software Engineering Award 2020 -- 1 Introduction -- 2 Overview of the Nominated PhD Theses -- 3 The Work of the Award Winner -- 4 Structure of the Book -- Thanks -- References -- Some Patterns of Convincing Software Engineering Research, or: How to Win the Ernst Denert Software Engineering Award 2020 -- 1 Introduction -- 2 Be in Scope -- 3 Enumerate Your Assumptions -- 4 Delineate Your Contribution -- 5 Honestly Discuss Limitations -- 6 Show Usefulness and Practical Applicability -- 7 Have a Well-Prepared Nutshell -- 8 Be Timeless -- What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style -- 1 Introduction -- 2 Effect Handlers -- 2.1 Aborting the Computation -- 2.2 Dynamic Dependencies -- 2.3 Advanced Control Flow -- 3 Effect Handlers and Object-Oriented Programming -- 3.1 Capability Passing -- 4 Lexically Scoped Effect Handlers: What You See Is What You Get -- 4.1 Dynamically Scoped Effect Handlers -- 4.2 Dynamic vs. Lexical Scoping -- 4.3 Lexically Scoped Effect Handlers -- 4.3.1 Effect Types Carry Meaning -- 4.4 Effect Parametricity -- 4.5 Effect Polymorphism -- 4.5.1 The Traditional Reading -- 4.5.2 The Contextual Reading -- 4.5.3 Parametric vs. Contextual Effect Polymorphism -- 4.5.4 Contextual Effect Polymorphism -- 4.6 What You See Is What You Get -- 5 Improving the Performance of Effect Handlers -- 5.1 Optimizing Handler Search -- 5.1.1 Optimizing Tail Resumptions -- 5.2 Optimizing Continuation Capture -- 5.3 Full Elimination of Control Abstractions -- 5.4 Performance Evaluation -- 6 Related Work -- 7 Conclusion and Future Directions -- 7.1 Future Directions -- References -- How to Effectively Reduce Failure Analysis Time? -- 1 Introduction -- 2 Failure Clustering -- 2.1 Clustering Approach -- 2.1.1 Failure Clustering with Coverage -- 2.1.2 Failure Clustering Without Coverage.
2.2 Industry Impact -- 3 Fault Localization -- 3.1 Syntactic Block Granularity -- 3.2 Re-ranking Program Elements -- 3.3 Evaluation -- 3.4 Predicting the Quality of SBFL -- 4 Contribution and Limitation -- 5 Summary and Outlook -- References -- Open Source Software Governance: Distilling and Applying Industry Best Practices -- 1 Introduction -- 2 Distilling Industry Best Practices -- 2.1 Getting Started with FLOSS Governance -- 2.2 Supply Chain Management -- 3 Applying Industry Best Practices -- 3.1 Case Study A -- 3.2 Case Study B -- 4 Conclusion -- References -- Dynamically Scalable Fog Architectures -- 1 Introduction -- 2 xFog: An Extension for Fog Computing -- 2.1 Fog Component -- 2.2 Fog Visibility -- 2.3 Fog Horizon -- 2.4 Fog Reachability -- 2.5 Fog Set -- 2.6 Service Constraints -- 2.7 Communication Set -- 3 xFogPlus: Dynamic and Scalable Fog Architectures -- 3.1 Dynamic Reconfigurability -- 3.2 Scalability -- 3.3 Handling Complexity -- 4 xFogStar: A Workflow for Service Provider Selection -- 5 Validation -- 6 Conclusion -- References -- Crossing Disciplinary Borders to Improve Requirements Communication -- 1 Introduction -- 2 Background and Improvement Goals -- 2.1 Requirements Artifacts -- 2.2 Practical Improvement Goals -- 2.3 Literature Review Activities -- 3 Solution Idea and Research Approach -- 4 Empirical Studies -- 4.1 Research Goals and Agenda -- 4.2 Analysis of Individual Studies: Empirical Baseline -- 4.2.1 Data Analysis Strategy: An Example -- 4.2.2 Data Interpretation -- 4.3 Secondary Data Analysis: Role-Specific Views -- 4.3.1 Data Analysis Strategy: An Example -- 4.3.2 Data Interpretation -- 4.3.3 Data Utilization -- 5 Limitations and Future Work -- 6 Summary -- References -- DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering -- 1 Introduction -- 2 Motivation -- 2.1 Central Hypothesis.
2.2 Research Background -- 3 DevOpsUse Methodology -- 3.1 Continuous Innovation -- 3.2 Collaborative Modeling -- 3.3 Monitoring -- 3.4 Connecting the DevOpsUse Life Cycle -- 4 Methodological and Technical Evaluation -- 4.1 Technology Evolution -- 4.2 Best Practice Guidelines -- 4.3 Application in Industry 4.0 -- 5 Conclusion -- References -- Hybrid Differential Software Testing -- 1 Introduction -- 2 Hybrid Differential Testing: Assumptions and Concept -- 3 Differential Fuzzing -- 4 Differential Dynamic Symbolic Execution -- 5 General Framework for Hybrid Differential Software Testing -- 6 Applications -- 6.1 Regression Analysis (A1) -- 6.2 Worst-Case Complexity Analysis (A2) -- 6.3 Side-Channel Analysis (A3) -- 6.4 Robustness Analysis of Neural Networks (A4) -- 7 Conclusion and Future Work -- References -- Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules -- 1 Introduction -- 2 Abstract Execution -- 2.1 Specifying Abstract Programs -- 2.2 Symbolic Execution of Abstract Program Elements -- 3 The REFINITY Workbench -- 4 Correctness of Refactoring Rules -- 5 Restructuring for Parallelization -- 6 Cost Analysis of Transformation Rules -- 7 Conclusion and Future Work -- References -- Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems -- 1 Introduction -- 2 Worst-Case Analyses -- 2.1 Background and System Model -- 2.1.1 Analysis Pessimism -- 2.1.2 System Model -- 2.2 Problem Statement of WCEC Analysis -- 2.3 SysWCEC: Whole-System WCEC Analysis -- 2.3.1 Decomposition: Power Atomic Basic Blocks -- 2.3.2 Path Exploration: Power-State-Transition Graph -- 2.3.3 ILP Formulation -- 2.3.4 Cost Modeling -- 3 Validation of Worst-Case Analyses -- 3.1 Problem Statement of Validating Worst-Case Analyses -- 3.2 GenE: Benchmark Generator for WCET Tools.
3.2.1 Program Pattern -- 3.2.2 Pattern Suites -- 3.2.3 Inputs and Outputs of GenE -- 3.3 Benchmark Weaving -- 3.4 MetricsWCA: Validation of GenE's Benchmarks -- 3.5 Determining Individual Strengths and Weaknesses of Analyzers with GenE -- 3.6 Validation of the aiT WCET Analyzer -- 3.7 Related Work and Generators in the GenE Family -- 3.7.1 Making Use of Analysis Pessimism on System Level -- 4 Conclusion -- References -- Improving the Model-Based Systems Engineering Process -- 1 Introduction -- 2 Systems Engineering Process at Daimler AG -- 2.1 Current Development Process at Daimler AG -- 2.2 Improving the Development Process at Daimler AG -- 3 Creating C&amp -- C High-Level Designs Based on Requirements -- 4 Automatic Structural Consistency Checks for Design Models -- 5 Satisfaction Verification Between Design and Functional Model -- 6 Creating C&amp -- C Functional Models Efficiently with EmbeddedMontiArc -- 7 Enriching C&amp -- C Functional Models with Extra-Functional Properties in a Consistent Way -- 8 Automatic Extra-Functional Property Verification Between Design and Functional Models -- 9 Conclusion -- References -- Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics -- 1 Introduction -- 2 Overview of Pair Programming Research -- 2.1 Quantitative Pair Programming Studies: Findings and Problems -- 2.2 Qualitative Pair Programming Studies: Findings and Problems -- 3 Research Goal, Data, and Method -- 4 Results: How Does Pair Programming Work? -- 4.1 Fluency and Togetherness -- 4.2 Knowledge Wants, Knowledge Needs, and Prototypical Dynamics -- 4.3 Practical Applications -- 5 Summary and Outlook -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Intro -- Contents -- Ernst Denert Software Engineering Award 2020 -- 1 Introduction -- 2 Overview of the Nominated PhD Theses -- 3 The Work of the Award Winner -- 4 Structure of the Book -- Thanks -- References -- Some Patterns of Convincing Software Engineering Research, or: How to Win the Ernst Denert Software Engineering Award 2020 -- 1 Introduction -- 2 Be in Scope -- 3 Enumerate Your Assumptions -- 4 Delineate Your Contribution -- 5 Honestly Discuss Limitations -- 6 Show Usefulness and Practical Applicability -- 7 Have a Well-Prepared Nutshell -- 8 Be Timeless -- What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style -- 1 Introduction -- 2 Effect Handlers -- 2.1 Aborting the Computation -- 2.2 Dynamic Dependencies -- 2.3 Advanced Control Flow -- 3 Effect Handlers and Object-Oriented Programming -- 3.1 Capability Passing -- 4 Lexically Scoped Effect Handlers: What You See Is What You Get -- 4.1 Dynamically Scoped Effect Handlers -- 4.2 Dynamic vs. Lexical Scoping -- 4.3 Lexically Scoped Effect Handlers -- 4.3.1 Effect Types Carry Meaning -- 4.4 Effect Parametricity -- 4.5 Effect Polymorphism -- 4.5.1 The Traditional Reading -- 4.5.2 The Contextual Reading -- 4.5.3 Parametric vs. Contextual Effect Polymorphism -- 4.5.4 Contextual Effect Polymorphism -- 4.6 What You See Is What You Get -- 5 Improving the Performance of Effect Handlers -- 5.1 Optimizing Handler Search -- 5.1.1 Optimizing Tail Resumptions -- 5.2 Optimizing Continuation Capture -- 5.3 Full Elimination of Control Abstractions -- 5.4 Performance Evaluation -- 6 Related Work -- 7 Conclusion and Future Directions -- 7.1 Future Directions -- References -- How to Effectively Reduce Failure Analysis Time? -- 1 Introduction -- 2 Failure Clustering -- 2.1 Clustering Approach -- 2.1.1 Failure Clustering with Coverage -- 2.1.2 Failure Clustering Without Coverage.

2.2 Industry Impact -- 3 Fault Localization -- 3.1 Syntactic Block Granularity -- 3.2 Re-ranking Program Elements -- 3.3 Evaluation -- 3.4 Predicting the Quality of SBFL -- 4 Contribution and Limitation -- 5 Summary and Outlook -- References -- Open Source Software Governance: Distilling and Applying Industry Best Practices -- 1 Introduction -- 2 Distilling Industry Best Practices -- 2.1 Getting Started with FLOSS Governance -- 2.2 Supply Chain Management -- 3 Applying Industry Best Practices -- 3.1 Case Study A -- 3.2 Case Study B -- 4 Conclusion -- References -- Dynamically Scalable Fog Architectures -- 1 Introduction -- 2 xFog: An Extension for Fog Computing -- 2.1 Fog Component -- 2.2 Fog Visibility -- 2.3 Fog Horizon -- 2.4 Fog Reachability -- 2.5 Fog Set -- 2.6 Service Constraints -- 2.7 Communication Set -- 3 xFogPlus: Dynamic and Scalable Fog Architectures -- 3.1 Dynamic Reconfigurability -- 3.2 Scalability -- 3.3 Handling Complexity -- 4 xFogStar: A Workflow for Service Provider Selection -- 5 Validation -- 6 Conclusion -- References -- Crossing Disciplinary Borders to Improve Requirements Communication -- 1 Introduction -- 2 Background and Improvement Goals -- 2.1 Requirements Artifacts -- 2.2 Practical Improvement Goals -- 2.3 Literature Review Activities -- 3 Solution Idea and Research Approach -- 4 Empirical Studies -- 4.1 Research Goals and Agenda -- 4.2 Analysis of Individual Studies: Empirical Baseline -- 4.2.1 Data Analysis Strategy: An Example -- 4.2.2 Data Interpretation -- 4.3 Secondary Data Analysis: Role-Specific Views -- 4.3.1 Data Analysis Strategy: An Example -- 4.3.2 Data Interpretation -- 4.3.3 Data Utilization -- 5 Limitations and Future Work -- 6 Summary -- References -- DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering -- 1 Introduction -- 2 Motivation -- 2.1 Central Hypothesis.

2.2 Research Background -- 3 DevOpsUse Methodology -- 3.1 Continuous Innovation -- 3.2 Collaborative Modeling -- 3.3 Monitoring -- 3.4 Connecting the DevOpsUse Life Cycle -- 4 Methodological and Technical Evaluation -- 4.1 Technology Evolution -- 4.2 Best Practice Guidelines -- 4.3 Application in Industry 4.0 -- 5 Conclusion -- References -- Hybrid Differential Software Testing -- 1 Introduction -- 2 Hybrid Differential Testing: Assumptions and Concept -- 3 Differential Fuzzing -- 4 Differential Dynamic Symbolic Execution -- 5 General Framework for Hybrid Differential Software Testing -- 6 Applications -- 6.1 Regression Analysis (A1) -- 6.2 Worst-Case Complexity Analysis (A2) -- 6.3 Side-Channel Analysis (A3) -- 6.4 Robustness Analysis of Neural Networks (A4) -- 7 Conclusion and Future Work -- References -- Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules -- 1 Introduction -- 2 Abstract Execution -- 2.1 Specifying Abstract Programs -- 2.2 Symbolic Execution of Abstract Program Elements -- 3 The REFINITY Workbench -- 4 Correctness of Refactoring Rules -- 5 Restructuring for Parallelization -- 6 Cost Analysis of Transformation Rules -- 7 Conclusion and Future Work -- References -- Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems -- 1 Introduction -- 2 Worst-Case Analyses -- 2.1 Background and System Model -- 2.1.1 Analysis Pessimism -- 2.1.2 System Model -- 2.2 Problem Statement of WCEC Analysis -- 2.3 SysWCEC: Whole-System WCEC Analysis -- 2.3.1 Decomposition: Power Atomic Basic Blocks -- 2.3.2 Path Exploration: Power-State-Transition Graph -- 2.3.3 ILP Formulation -- 2.3.4 Cost Modeling -- 3 Validation of Worst-Case Analyses -- 3.1 Problem Statement of Validating Worst-Case Analyses -- 3.2 GenE: Benchmark Generator for WCET Tools.

3.2.1 Program Pattern -- 3.2.2 Pattern Suites -- 3.2.3 Inputs and Outputs of GenE -- 3.3 Benchmark Weaving -- 3.4 MetricsWCA: Validation of GenE's Benchmarks -- 3.5 Determining Individual Strengths and Weaknesses of Analyzers with GenE -- 3.6 Validation of the aiT WCET Analyzer -- 3.7 Related Work and Generators in the GenE Family -- 3.7.1 Making Use of Analysis Pessimism on System Level -- 4 Conclusion -- References -- Improving the Model-Based Systems Engineering Process -- 1 Introduction -- 2 Systems Engineering Process at Daimler AG -- 2.1 Current Development Process at Daimler AG -- 2.2 Improving the Development Process at Daimler AG -- 3 Creating C& -- C High-Level Designs Based on Requirements -- 4 Automatic Structural Consistency Checks for Design Models -- 5 Satisfaction Verification Between Design and Functional Model -- 6 Creating C& -- C Functional Models Efficiently with EmbeddedMontiArc -- 7 Enriching C& -- C Functional Models with Extra-Functional Properties in a Consistent Way -- 8 Automatic Extra-Functional Property Verification Between Design and Functional Models -- 9 Conclusion -- References -- Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics -- 1 Introduction -- 2 Overview of Pair Programming Research -- 2.1 Quantitative Pair Programming Studies: Findings and Problems -- 2.2 Qualitative Pair Programming Studies: Findings and Problems -- 3 Research Goal, Data, and Method -- 4 Results: How Does Pair Programming Work? -- 4.1 Fluency and Togetherness -- 4.2 Knowledge Wants, Knowledge Needs, and Prototypical Dynamics -- 4.3 Practical Applications -- 5 Summary and Outlook -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.