IUKL Library
Normal view MARC view ISBD view

Dynamic Spectrum Management : From Cognitive Radio to Blockchain and Artificial Intelligence.

By: Liang, Ying-Chang.
Material type: materialTypeLabelBookSeries: Signals and Communication Technology Series: Publisher: Singapore : Springer Singapore Pte. Limited, 2019Copyright date: �2020Edition: 1st ed.Description: 1 online resource (180 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9789811507762.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction -- 1.1 Background -- 1.2 Dynamic Spectrum Management -- 1.2.1 Opportunistic Spectrum Access -- 1.2.2 Concurrent Spectrum Access -- 1.3 Cognitive Radio for Dynamic Spectrum Management -- 1.4 Blockchain for Dynamic Spectrum Management -- 1.5 Artificial Intelligence for Dynamic Spectrum Management -- 1.6 Outline of the Book -- References -- 2 Opportunistic Spectrum Access -- 2.1 Introduction -- 2.2 Sensing-Throughput Tradeoff -- 2.2.1 Basic Formulation -- 2.2.2 Cooperative Spectrum Sensing -- 2.3 Spectrum Sensing Scheduling -- 2.4 Sequential Spectrum Sensing -- 2.4.1 Given Sensing Order -- 2.4.2 Optimal Sensing Order -- 2.5 Applications: LTE-U -- 2.5.1 LBT-Based Medium Access Control Protocol Design -- 2.5.2 User Association: To be WiFi or LTE-U User? -- 2.6 Summary -- References -- 3 Spectrum Sensing Theories and Methods -- 3.1 Introduction -- 3.1.1 System Model for Spectrum Sensing -- 3.1.2 Design Challenges for Spectrum Sensing -- 3.2 Classical Detection Theories and Methods -- 3.2.1 Neyman-Pearson Theorem -- 3.2.2 Bayesian Method and the Generalized Likelihood Ratio Test -- 3.2.3 Robust Hypothesis Testing -- 3.2.4 Energy Detection -- 3.2.5 Sequential Energy Detection -- 3.2.6 Matched Filtering -- 3.2.7 Cyclostationary Detection -- 3.2.8 Detection Threshold and Test Statistic Distribution -- 3.3 Eigenvalue Based Detections -- 3.3.1 The Methods -- 3.3.2 Threshold Setting -- 3.3.3 Performances of the Methods -- 3.4 Covariance Based Detections -- 3.4.1 The Methods -- 3.4.2 Detection Probability and Threshold Determination -- 3.4.3 Performance Analysis and Comparison -- 3.5 Cooperative Spectrum Sensing -- 3.5.1 Data Fusion -- 3.5.2 Decision Fusion -- 3.5.3 Robustness of Cooperative Sensing -- 3.5.4 Cooperative CBD and EBD -- 3.6 Summary -- References.
4 Concurrent Spectrum Access -- 4.1 Introduction -- 4.2 Single-Antenna CSA -- 4.2.1 Power Constraints -- 4.2.2 Optimal Transmit Power Design -- 4.3 Cognitive Beamforming -- 4.3.1 Interference Channel Learning -- 4.3.2 CB with Perfect Channel Learning -- 4.3.3 CB with Imperfect Channel Learning: A Learning-Throughput Tradeoff -- 4.4 Cognitive MIMO -- 4.4.1 Spatial Spectrum Design -- 4.4.2 Learning-Based Joint Spatial Spectrum Design -- 4.5 Cognitive Multiple-Access and Broadcasting Channels -- 4.5.1 Cognitive Multiple-Access Channel -- 4.5.2 Cognitive Broadcasting Channel -- 4.6 Robust Design -- 4.6.1 Uncertain Interference Channel -- 4.6.2 Uncertain Interference and Secondary Signal Channels -- 4.7 Application: Spectrum Refarming -- 4.7.1 SR with Active Infrastructure Sharing -- 4.7.2 SR with Passive Infrastructure Sharing -- 4.7.3 SR in Heterogeneous Networks -- 4.8 Summary -- References -- 5 Blockchain for Dynamic Spectrum Management -- 5.1 Introduction -- 5.2 Blockchain Technologies -- 5.2.1 Overview of Blockchain -- 5.2.2 Features and the Potential Attacks on Blockchain -- 5.2.3 Smart Contracts Enabled by Blockchain -- 5.3 Blockchain for Spectrum Management: Basic Principles -- 5.3.1 Blockchain as a Secure Database for Spectrum Management -- 5.3.2 Self-organized Spectrum Market Supported by Blockchain -- 5.3.3 Deployment of Blockchain over Cognitive Radio Networks -- 5.3.4 Challenges of Applying Blockchain to Spectrum Management -- 5.4 Blockchain for Spectrum Management: Examples -- 5.4.1 Consensus-Based Dynamic Spectrum Access -- 5.4.2 Secure Spectrum Auctions with Blockchain -- 5.4.3 Secure Spectrum Sensing Service with Smart Contracts -- 5.4.4 Blockchain-Enabled Cooperative Dynamic Spectrum Access -- 5.5 Future Directions -- 5.6 Summary -- References -- 6 Artificial Intelligence for Dynamic Spectrum Management -- 6.1 Introduction.
6.2 Overview of Machine Learning Techniques -- 6.2.1 Statistical Machine Learning -- 6.2.2 Deep Learning -- 6.2.3 Deep Reinforcement Learning -- 6.3 Machine Learning for Spectrum Sensing -- 6.4 Machine Learning for Signal Classification -- 6.4.1 Modulation-Constrained Clustering Approach -- 6.4.2 Deep Learning Approach -- 6.5 Deep Reinforcement Learning for Dynamic Spectrum Access -- 6.5.1 Deep Multi-user Reinforcement Learning for Distributed Dynamic Spectrum Access -- 6.5.2 Deep Reinforcement Learning for Joint User Association and Resource Allocation -- 6.6 Summary -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction -- 1.1 Background -- 1.2 Dynamic Spectrum Management -- 1.2.1 Opportunistic Spectrum Access -- 1.2.2 Concurrent Spectrum Access -- 1.3 Cognitive Radio for Dynamic Spectrum Management -- 1.4 Blockchain for Dynamic Spectrum Management -- 1.5 Artificial Intelligence for Dynamic Spectrum Management -- 1.6 Outline of the Book -- References -- 2 Opportunistic Spectrum Access -- 2.1 Introduction -- 2.2 Sensing-Throughput Tradeoff -- 2.2.1 Basic Formulation -- 2.2.2 Cooperative Spectrum Sensing -- 2.3 Spectrum Sensing Scheduling -- 2.4 Sequential Spectrum Sensing -- 2.4.1 Given Sensing Order -- 2.4.2 Optimal Sensing Order -- 2.5 Applications: LTE-U -- 2.5.1 LBT-Based Medium Access Control Protocol Design -- 2.5.2 User Association: To be WiFi or LTE-U User? -- 2.6 Summary -- References -- 3 Spectrum Sensing Theories and Methods -- 3.1 Introduction -- 3.1.1 System Model for Spectrum Sensing -- 3.1.2 Design Challenges for Spectrum Sensing -- 3.2 Classical Detection Theories and Methods -- 3.2.1 Neyman-Pearson Theorem -- 3.2.2 Bayesian Method and the Generalized Likelihood Ratio Test -- 3.2.3 Robust Hypothesis Testing -- 3.2.4 Energy Detection -- 3.2.5 Sequential Energy Detection -- 3.2.6 Matched Filtering -- 3.2.7 Cyclostationary Detection -- 3.2.8 Detection Threshold and Test Statistic Distribution -- 3.3 Eigenvalue Based Detections -- 3.3.1 The Methods -- 3.3.2 Threshold Setting -- 3.3.3 Performances of the Methods -- 3.4 Covariance Based Detections -- 3.4.1 The Methods -- 3.4.2 Detection Probability and Threshold Determination -- 3.4.3 Performance Analysis and Comparison -- 3.5 Cooperative Spectrum Sensing -- 3.5.1 Data Fusion -- 3.5.2 Decision Fusion -- 3.5.3 Robustness of Cooperative Sensing -- 3.5.4 Cooperative CBD and EBD -- 3.6 Summary -- References.

4 Concurrent Spectrum Access -- 4.1 Introduction -- 4.2 Single-Antenna CSA -- 4.2.1 Power Constraints -- 4.2.2 Optimal Transmit Power Design -- 4.3 Cognitive Beamforming -- 4.3.1 Interference Channel Learning -- 4.3.2 CB with Perfect Channel Learning -- 4.3.3 CB with Imperfect Channel Learning: A Learning-Throughput Tradeoff -- 4.4 Cognitive MIMO -- 4.4.1 Spatial Spectrum Design -- 4.4.2 Learning-Based Joint Spatial Spectrum Design -- 4.5 Cognitive Multiple-Access and Broadcasting Channels -- 4.5.1 Cognitive Multiple-Access Channel -- 4.5.2 Cognitive Broadcasting Channel -- 4.6 Robust Design -- 4.6.1 Uncertain Interference Channel -- 4.6.2 Uncertain Interference and Secondary Signal Channels -- 4.7 Application: Spectrum Refarming -- 4.7.1 SR with Active Infrastructure Sharing -- 4.7.2 SR with Passive Infrastructure Sharing -- 4.7.3 SR in Heterogeneous Networks -- 4.8 Summary -- References -- 5 Blockchain for Dynamic Spectrum Management -- 5.1 Introduction -- 5.2 Blockchain Technologies -- 5.2.1 Overview of Blockchain -- 5.2.2 Features and the Potential Attacks on Blockchain -- 5.2.3 Smart Contracts Enabled by Blockchain -- 5.3 Blockchain for Spectrum Management: Basic Principles -- 5.3.1 Blockchain as a Secure Database for Spectrum Management -- 5.3.2 Self-organized Spectrum Market Supported by Blockchain -- 5.3.3 Deployment of Blockchain over Cognitive Radio Networks -- 5.3.4 Challenges of Applying Blockchain to Spectrum Management -- 5.4 Blockchain for Spectrum Management: Examples -- 5.4.1 Consensus-Based Dynamic Spectrum Access -- 5.4.2 Secure Spectrum Auctions with Blockchain -- 5.4.3 Secure Spectrum Sensing Service with Smart Contracts -- 5.4.4 Blockchain-Enabled Cooperative Dynamic Spectrum Access -- 5.5 Future Directions -- 5.6 Summary -- References -- 6 Artificial Intelligence for Dynamic Spectrum Management -- 6.1 Introduction.

6.2 Overview of Machine Learning Techniques -- 6.2.1 Statistical Machine Learning -- 6.2.2 Deep Learning -- 6.2.3 Deep Reinforcement Learning -- 6.3 Machine Learning for Spectrum Sensing -- 6.4 Machine Learning for Signal Classification -- 6.4.1 Modulation-Constrained Clustering Approach -- 6.4.2 Deep Learning Approach -- 6.5 Deep Reinforcement Learning for Dynamic Spectrum Access -- 6.5.1 Deep Multi-user Reinforcement Learning for Distributed Dynamic Spectrum Access -- 6.5.2 Deep Reinforcement Learning for Joint User Association and Resource Allocation -- 6.6 Summary -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.