IUKL Library
Normal view MARC view ISBD view

Automated Vehicles As a Game Changer for Sustainable Mobility : Learnings and Solutions.

By: Fournier, Guy.
Contributor(s): Boos, Adrian | Konstantas, Dimitri | Attias, Danielle.
Material type: materialTypeLabelBookSeries: Contributions to Management Science Series: Publisher: Cham : Springer, 2024Copyright date: �2024Edition: 1st ed.Description: 1 online resource (522 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9783031616815.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Foreword -- Foreword -- Foreword -- The Five Ts: Transparency, Trust, Teamwork, Try, and Transform -- We Need a Climate for Change -- Horizon 2020 Project AVENUE -- Europe Fit for the Digital Decade -- The Five Ts: Transparency, Trust, Teamwork, Try, and Transform -- Acknowledgements -- About This Book -- Contents -- Contributors -- Acronyms -- Chapter 1: Introduction -- 1.1 Automated Vehicles (AVs) for a New Mobility -- 1.2 Contents of the Individual Book Parts -- 1.2.1 Part 1: The AVENUE Project: Implementing Automated Minibuses for "Door-to-Door" and "On-Demand" Passenger Transportation in Geneva, Lyon, Luxembourg and Copenhagen -- 1.2.2 Part 2: Impact Assessment of AVENUE -- 1.2.3 Future Vision of AVENUE -- References -- Part I: The AVENUE Project: Implementing Automated Minibuses for "Door-to-Door" and "On-Demand" Passenger Transportation in Geneva, Lyon, Luxembourg and Copenhagen -- Chapter 2: AVENUE Site Demonstrators: Geneva, Lyon, Luxembourg, and Copenhagen -- 2.1 Introduction -- 2.2 The Changing Landscape of Mobility -- 2.2.1 Fighting Congestion -- 2.2.2 The Transformation of Public Transportation -- 2.2.3 Readiness to Adopt New Transportation Means -- 2.2.4 Challenges for Public Transport Operators (PTOs) -- 2.3 The Geneva Sites -- 2.3.1 Objectives -- 2.3.2 Deployment -- 2.3.3 Achievements and Key Success Factors -- 2.3.4 Recommendations -- 2.3.5 Future Developments -- 2.4 Denmark and Norway -- 2.4.1 Nordhavn -- 2.4.1.1 Objectives -- 2.4.1.2 Deployment -- 2.4.1.3 Achievements and Key Success Factors -- Passengers and Distance Driven -- Driving Speed and Automated vs. Manual Mode -- Issues Reported on Route -- Downtime and Cancelled Operation -- 2.4.1.4 Recommendations -- Object-Detection Challenges -- Increased Mixed Traffic in High Seasons -- Consequences of Construction Work.
Lack of Parking Spots Compared to the Number of Cars -- Low-Speed Limit -- 2.4.1.5 Future Developments -- Complications in Nordhavn -- 2.4.2 Orm�ya -- 2.4.2.1 Objectives -- 2.4.2.2 Deployment -- 2.4.2.3 Achievements and Key Success Factors -- Passengers and Distance -- Automated vs. Manual Driving -- Issues Encountered on the Route -- 2.4.2.4 Recommendations -- Public Transport in Oslo -- User Experience -- Vegetation and Snow -- Major Safety Issues -- 2.4.3 Slagelse -- 2.4.3.1 Objectives -- 2.4.3.2 Deployment -- Red Section -- Green Section -- Blue Section -- Parking Conditions -- 2.4.3.3 Achievements and Key Success Factors -- Distance and Passengers -- Automated Vs. Manual Driving -- 2.4.3.4 Recommendations -- User Experience Learnings -- Patients -- Relatives/Visitors -- Employees -- Performance Learnings -- Low-Speed Environment -- Low Complexity Environment -- 2.4.4 Conclusions -- 2.5 Lyon, France -- 2.5.1 Objectives -- 2.5.2 Deployment -- 2.5.3 Achievements and Key Success Factors -- 2.5.4 Future Development -- 2.5.4.1 The Constraints of Availability for Users -- 2.5.4.2 Energy Constraints and Battery Capacity -- 2.5.4.3 Facilitate the Relationship with the User -- 2.5.4.4 Pricing Issue -- 2.6 Luxembourg -- 2.6.1 Pfaffenthal -- 2.6.1.1 Objectives -- 2.6.1.2 Deployment -- 2.6.1.3 Achievements and Key Success Factors -- 2.6.1.4 Future Development -- 2.6.2 Contern -- 2.6.2.1 Objectives -- 2.6.2.2 Deployment -- 2.6.2.3 Achievements and Key Success Factors -- 2.6.2.4 Future Development -- 2.6.3 Esch-Sur-Alzette -- 2.6.3.1 Objectives -- 2.6.3.2 Deployment -- 2.6.3.3 Achievements and Key Success Factors -- 2.6.3.4 Future Development -- 2.7 Lessons Learned -- References -- Chapter 3: Automated Minibuses: State of the Art and Improvements Through AVENUE -- 3.1 Introduction -- 3.2 Automated Driving Context before Starting AVENUE.
3.2.1 Market Projection -- 3.2.2 Automated Driving -- 3.2.3 The Landscape of Automated Mobility -- 3.2.4 NAVYA before 2018 -- 3.2.4.1 Hardware -- 3.2.4.2 Software -- 3.2.4.3 Services -- 3.2.5 NAVYA Ecosystem -- 3.2.6 Legal Boundaries -- 3.3 Technology Improvements Through AVENUE -- 3.3.1 A Global View -- 3.3.2 NAVYA Software -- 3.3.3 Automotive New Release Process -- 3.3.4 NavyaDrive� Evolutions -- 3.3.4.1 The Operating System -- 3.3.4.2 Over-the-Air Update -- 3.3.4.3 On-Demand Service -- 3.3.4.4 V2X Traffic Light Management -- 3.3.4.5 V2X Solution for Complex Situations -- 3.3.4.6 Driving Enhancement -- 3.3.5 Supervision Improvements and NavyaOperate� -- 3.3.6 Navya API -- 3.3.7 HMI and Experience Enhancement -- 3.3.7.1 Operator User Interface -- 3.3.7.2 Event Triggering System -- 3.3.7.3 In-Vehicle Audio Announcements (UI) -- 3.3.7.4 Interactive Interface for Passengers (UI) -- 3.3.7.5 External Sound (UI) -- 3.3.7.6 External Screen and Human-Machine Interface (HMI) -- 3.3.8 Other Enhancements -- 3.3.8.1 Hardware Enhancement -- 3.3.8.2 Mapping, Commissioning, and Tools -- 3.3.8.3 Additional Tool Enhancements -- 3.4 Beyond Avenue -- 3.5 Conclusion -- References -- Chapter 4: Safety, Security and Service Quality for Automated Minibuses: State of the Art, Technical Requirements and Data Privacy in Case of Incident -- 4.1 Introduction -- 4.2 A Shared Sustainability and Durability Target for the Society and for Companies -- 4.3 The Conditions to Make it a Sustainable and Durable Solution -- 4.3.1 Traffic Management and Energy Consumption -- 4.3.2 "Customer" Durable Satisfaction, Including Safety -- 4.3.3 Safety Measurable Targets and Steps -- 4.4 The Critical Path for Market Introduction of Safe Automated Minibuses -- 4.5 Quality and Safety State of the Art for Automated Minibuses -- 4.6 A Self-Learning Automated Transport System at European Level.
4.7 Data Privacy of Incident Analysis and Lesson Learned Sharing -- 4.8 Automated Minibus Safety and Service Quality Levers -- 4.9 Conclusion -- References -- Chapter 5: In-Vehicle Services to Improve the User Experience and Security when Traveling with Automated Minibuses -- 5.1 Introduction -- 5.2 Service: Enhance the Sense of Security and Trust -- 5.3 Service: Automated Passenger Presence -- 5.4 Service: Follow My Kid/Grandparents -- 5.5 Service: Shuttle Environment Assessment -- 5.6 Service: Smart Feedback System -- 5.7 Conclusion -- References -- Chapter 6: Cybersecurity and Data Privacy: Stakeholders' Stand on Regulations and Standards -- 6.1 Introduction -- 6.1.1 CAVs' Threats -- 6.1.1.1 In-Vehicle Equipment -- 6.1.1.2 External Communication Technologies -- 6.1.2 Motivation -- 6.2 Regulations and Standards -- 6.2.1 CAVs Privacy Initiatives -- 6.3 Methodology -- 6.4 Findings -- 6.5 Discussion and Recommendations -- 6.5.1 Standards Coverage Map -- 6.5.2 Further Recommendations -- 6.5.3 Assessment Limitations -- 6.6 Conclusion -- References -- Chapter 7: Technical Cybersecurity Implementation on Automated Minibuses with Security Information and Event Management (SIEM) -- 7.1 Introduction -- 7.2 Basics of a SIEM Software Solution -- 7.3 Most Popular SIEM Open-Source Software -- 7.4 SIEM Benefits for CAV Infrastructure -- 7.5 Limitations of SIEM -- 7.6 Characteristics of the SIEM Platform -- 7.7 Investigation on Diverse Implementations within AVENUE -- 7.8 Conclusion -- References -- Chapter 8: Persons with Reduced Mobility (PRM) Specific Requirements for Passenger Transportation Services -- 8.1 Introduction -- 8.2 Requirements of Passengers (Interview Results) -- 8.2.1 Phase 1 (July-September 2018) -- 8.2.2 Public Transport in General -- 8.2.3 Attitude Towards Fully Automated Public Transport (Unexperienced Pax).
8.2.4 Phase 2 (June 2019-February 2020) -- 8.2.5 Interviews with Safety Operators -- 8.2.6 Interviews with Experienced Passengers: Attitude Towards Fully Automated Public Transport -- 8.3 A Blind Users' Perspective on Automated Vehicles -- 8.3.1 Bus Stops on the Course -- 8.3.2 Boarding Process -- 8.3.3 Interior Situation and Bus Ride -- 8.3.4 Getting Out of the Bus -- 8.3.5 Klaus-Dieter's Summary -- 8.4 Situation-Based Impairments of Different Passenger Groups -- 8.5 Proposed Implementation of User Requirements -- 8.5.1 Mock-Up for an Accessible App for Fully Automated Public Transport -- 8.5.2 Information Display in the Vehicle -- 8.6 Conclusions -- Appendix: Mobile Apps for Blind and Low-Vision Public Transport Travellers -- List of Mobile Applications -- GoodMaps Outdoors -- BlindSquare -- myfinder -- Seeing AI -- References -- Chapter 9: Stakeholder Analysis and AVENUE Strategies -- 9.1 Introduction -- 9.1.1 Research Aim -- 9.1.2 Research Approach -- 9.2 Empirical Stakeholder Analysis -- 9.2.1 Results of the Initial Stakeholder Scan -- 9.2.1.1 Power-Interest and Impact-Attribute Grid -- 9.2.1.2 Onion Diagram -- 9.2.1.3 Selection of Stakeholder Groups -- 9.2.2 Self-Assessment Stakeholder Groups -- 9.2.2.1 Public Transport Operators -- 9.2.2.2 Manufacturers -- 9.2.2.3 Software Providers -- 9.2.2.4 Driver Unions -- 9.2.2.5 Policymakers -- 9.2.2.6 Civil Society Organizations/Citizen Organizations -- 9.2.3 Results from the Cross-Sectional Analysis -- 9.2.3.1 The Crucial Role of City Government -- 9.2.3.2 Technology Development and Legal Regulations -- 9.2.3.3 Restructuring the Mobility Industry -- 9.2.3.4 Social Acceptance and Environmental Aspects -- 9.2.3.5 Future Scenarios -- 9.2.4 Stakeholder Map -- 9.2.4.1 Structure of the Stakeholder Map -- 9.2.4.2 Insights from the Stakeholder Map.
9.3 Conceptual AVENUE Stakeholder and Mobility Services Analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Intro -- Foreword -- Foreword -- Foreword -- The Five Ts: Transparency, Trust, Teamwork, Try, and Transform -- We Need a Climate for Change -- Horizon 2020 Project AVENUE -- Europe Fit for the Digital Decade -- The Five Ts: Transparency, Trust, Teamwork, Try, and Transform -- Acknowledgements -- About This Book -- Contents -- Contributors -- Acronyms -- Chapter 1: Introduction -- 1.1 Automated Vehicles (AVs) for a New Mobility -- 1.2 Contents of the Individual Book Parts -- 1.2.1 Part 1: The AVENUE Project: Implementing Automated Minibuses for "Door-to-Door" and "On-Demand" Passenger Transportation in Geneva, Lyon, Luxembourg and Copenhagen -- 1.2.2 Part 2: Impact Assessment of AVENUE -- 1.2.3 Future Vision of AVENUE -- References -- Part I: The AVENUE Project: Implementing Automated Minibuses for "Door-to-Door" and "On-Demand" Passenger Transportation in Geneva, Lyon, Luxembourg and Copenhagen -- Chapter 2: AVENUE Site Demonstrators: Geneva, Lyon, Luxembourg, and Copenhagen -- 2.1 Introduction -- 2.2 The Changing Landscape of Mobility -- 2.2.1 Fighting Congestion -- 2.2.2 The Transformation of Public Transportation -- 2.2.3 Readiness to Adopt New Transportation Means -- 2.2.4 Challenges for Public Transport Operators (PTOs) -- 2.3 The Geneva Sites -- 2.3.1 Objectives -- 2.3.2 Deployment -- 2.3.3 Achievements and Key Success Factors -- 2.3.4 Recommendations -- 2.3.5 Future Developments -- 2.4 Denmark and Norway -- 2.4.1 Nordhavn -- 2.4.1.1 Objectives -- 2.4.1.2 Deployment -- 2.4.1.3 Achievements and Key Success Factors -- Passengers and Distance Driven -- Driving Speed and Automated vs. Manual Mode -- Issues Reported on Route -- Downtime and Cancelled Operation -- 2.4.1.4 Recommendations -- Object-Detection Challenges -- Increased Mixed Traffic in High Seasons -- Consequences of Construction Work.

Lack of Parking Spots Compared to the Number of Cars -- Low-Speed Limit -- 2.4.1.5 Future Developments -- Complications in Nordhavn -- 2.4.2 Orm�ya -- 2.4.2.1 Objectives -- 2.4.2.2 Deployment -- 2.4.2.3 Achievements and Key Success Factors -- Passengers and Distance -- Automated vs. Manual Driving -- Issues Encountered on the Route -- 2.4.2.4 Recommendations -- Public Transport in Oslo -- User Experience -- Vegetation and Snow -- Major Safety Issues -- 2.4.3 Slagelse -- 2.4.3.1 Objectives -- 2.4.3.2 Deployment -- Red Section -- Green Section -- Blue Section -- Parking Conditions -- 2.4.3.3 Achievements and Key Success Factors -- Distance and Passengers -- Automated Vs. Manual Driving -- 2.4.3.4 Recommendations -- User Experience Learnings -- Patients -- Relatives/Visitors -- Employees -- Performance Learnings -- Low-Speed Environment -- Low Complexity Environment -- 2.4.4 Conclusions -- 2.5 Lyon, France -- 2.5.1 Objectives -- 2.5.2 Deployment -- 2.5.3 Achievements and Key Success Factors -- 2.5.4 Future Development -- 2.5.4.1 The Constraints of Availability for Users -- 2.5.4.2 Energy Constraints and Battery Capacity -- 2.5.4.3 Facilitate the Relationship with the User -- 2.5.4.4 Pricing Issue -- 2.6 Luxembourg -- 2.6.1 Pfaffenthal -- 2.6.1.1 Objectives -- 2.6.1.2 Deployment -- 2.6.1.3 Achievements and Key Success Factors -- 2.6.1.4 Future Development -- 2.6.2 Contern -- 2.6.2.1 Objectives -- 2.6.2.2 Deployment -- 2.6.2.3 Achievements and Key Success Factors -- 2.6.2.4 Future Development -- 2.6.3 Esch-Sur-Alzette -- 2.6.3.1 Objectives -- 2.6.3.2 Deployment -- 2.6.3.3 Achievements and Key Success Factors -- 2.6.3.4 Future Development -- 2.7 Lessons Learned -- References -- Chapter 3: Automated Minibuses: State of the Art and Improvements Through AVENUE -- 3.1 Introduction -- 3.2 Automated Driving Context before Starting AVENUE.

3.2.1 Market Projection -- 3.2.2 Automated Driving -- 3.2.3 The Landscape of Automated Mobility -- 3.2.4 NAVYA before 2018 -- 3.2.4.1 Hardware -- 3.2.4.2 Software -- 3.2.4.3 Services -- 3.2.5 NAVYA Ecosystem -- 3.2.6 Legal Boundaries -- 3.3 Technology Improvements Through AVENUE -- 3.3.1 A Global View -- 3.3.2 NAVYA Software -- 3.3.3 Automotive New Release Process -- 3.3.4 NavyaDrive� Evolutions -- 3.3.4.1 The Operating System -- 3.3.4.2 Over-the-Air Update -- 3.3.4.3 On-Demand Service -- 3.3.4.4 V2X Traffic Light Management -- 3.3.4.5 V2X Solution for Complex Situations -- 3.3.4.6 Driving Enhancement -- 3.3.5 Supervision Improvements and NavyaOperate� -- 3.3.6 Navya API -- 3.3.7 HMI and Experience Enhancement -- 3.3.7.1 Operator User Interface -- 3.3.7.2 Event Triggering System -- 3.3.7.3 In-Vehicle Audio Announcements (UI) -- 3.3.7.4 Interactive Interface for Passengers (UI) -- 3.3.7.5 External Sound (UI) -- 3.3.7.6 External Screen and Human-Machine Interface (HMI) -- 3.3.8 Other Enhancements -- 3.3.8.1 Hardware Enhancement -- 3.3.8.2 Mapping, Commissioning, and Tools -- 3.3.8.3 Additional Tool Enhancements -- 3.4 Beyond Avenue -- 3.5 Conclusion -- References -- Chapter 4: Safety, Security and Service Quality for Automated Minibuses: State of the Art, Technical Requirements and Data Privacy in Case of Incident -- 4.1 Introduction -- 4.2 A Shared Sustainability and Durability Target for the Society and for Companies -- 4.3 The Conditions to Make it a Sustainable and Durable Solution -- 4.3.1 Traffic Management and Energy Consumption -- 4.3.2 "Customer" Durable Satisfaction, Including Safety -- 4.3.3 Safety Measurable Targets and Steps -- 4.4 The Critical Path for Market Introduction of Safe Automated Minibuses -- 4.5 Quality and Safety State of the Art for Automated Minibuses -- 4.6 A Self-Learning Automated Transport System at European Level.

4.7 Data Privacy of Incident Analysis and Lesson Learned Sharing -- 4.8 Automated Minibus Safety and Service Quality Levers -- 4.9 Conclusion -- References -- Chapter 5: In-Vehicle Services to Improve the User Experience and Security when Traveling with Automated Minibuses -- 5.1 Introduction -- 5.2 Service: Enhance the Sense of Security and Trust -- 5.3 Service: Automated Passenger Presence -- 5.4 Service: Follow My Kid/Grandparents -- 5.5 Service: Shuttle Environment Assessment -- 5.6 Service: Smart Feedback System -- 5.7 Conclusion -- References -- Chapter 6: Cybersecurity and Data Privacy: Stakeholders' Stand on Regulations and Standards -- 6.1 Introduction -- 6.1.1 CAVs' Threats -- 6.1.1.1 In-Vehicle Equipment -- 6.1.1.2 External Communication Technologies -- 6.1.2 Motivation -- 6.2 Regulations and Standards -- 6.2.1 CAVs Privacy Initiatives -- 6.3 Methodology -- 6.4 Findings -- 6.5 Discussion and Recommendations -- 6.5.1 Standards Coverage Map -- 6.5.2 Further Recommendations -- 6.5.3 Assessment Limitations -- 6.6 Conclusion -- References -- Chapter 7: Technical Cybersecurity Implementation on Automated Minibuses with Security Information and Event Management (SIEM) -- 7.1 Introduction -- 7.2 Basics of a SIEM Software Solution -- 7.3 Most Popular SIEM Open-Source Software -- 7.4 SIEM Benefits for CAV Infrastructure -- 7.5 Limitations of SIEM -- 7.6 Characteristics of the SIEM Platform -- 7.7 Investigation on Diverse Implementations within AVENUE -- 7.8 Conclusion -- References -- Chapter 8: Persons with Reduced Mobility (PRM) Specific Requirements for Passenger Transportation Services -- 8.1 Introduction -- 8.2 Requirements of Passengers (Interview Results) -- 8.2.1 Phase 1 (July-September 2018) -- 8.2.2 Public Transport in General -- 8.2.3 Attitude Towards Fully Automated Public Transport (Unexperienced Pax).

8.2.4 Phase 2 (June 2019-February 2020) -- 8.2.5 Interviews with Safety Operators -- 8.2.6 Interviews with Experienced Passengers: Attitude Towards Fully Automated Public Transport -- 8.3 A Blind Users' Perspective on Automated Vehicles -- 8.3.1 Bus Stops on the Course -- 8.3.2 Boarding Process -- 8.3.3 Interior Situation and Bus Ride -- 8.3.4 Getting Out of the Bus -- 8.3.5 Klaus-Dieter's Summary -- 8.4 Situation-Based Impairments of Different Passenger Groups -- 8.5 Proposed Implementation of User Requirements -- 8.5.1 Mock-Up for an Accessible App for Fully Automated Public Transport -- 8.5.2 Information Display in the Vehicle -- 8.6 Conclusions -- Appendix: Mobile Apps for Blind and Low-Vision Public Transport Travellers -- List of Mobile Applications -- GoodMaps Outdoors -- BlindSquare -- myfinder -- Seeing AI -- References -- Chapter 9: Stakeholder Analysis and AVENUE Strategies -- 9.1 Introduction -- 9.1.1 Research Aim -- 9.1.2 Research Approach -- 9.2 Empirical Stakeholder Analysis -- 9.2.1 Results of the Initial Stakeholder Scan -- 9.2.1.1 Power-Interest and Impact-Attribute Grid -- 9.2.1.2 Onion Diagram -- 9.2.1.3 Selection of Stakeholder Groups -- 9.2.2 Self-Assessment Stakeholder Groups -- 9.2.2.1 Public Transport Operators -- 9.2.2.2 Manufacturers -- 9.2.2.3 Software Providers -- 9.2.2.4 Driver Unions -- 9.2.2.5 Policymakers -- 9.2.2.6 Civil Society Organizations/Citizen Organizations -- 9.2.3 Results from the Cross-Sectional Analysis -- 9.2.3.1 The Crucial Role of City Government -- 9.2.3.2 Technology Development and Legal Regulations -- 9.2.3.3 Restructuring the Mobility Industry -- 9.2.3.4 Social Acceptance and Environmental Aspects -- 9.2.3.5 Future Scenarios -- 9.2.4 Stakeholder Map -- 9.2.4.1 Structure of the Stakeholder Map -- 9.2.4.2 Insights from the Stakeholder Map.

9.3 Conceptual AVENUE Stakeholder and Mobility Services Analysis.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.