IUKL Library
Normal view MARC view ISBD view

Radio Propagation in the Urban Scenario.

By: Franceschetti, Giorgio.
Material type: materialTypeLabelBookPublisher: Norwood, MA : Artech House, 2023Copyright date: �2023Edition: 1st ed.Description: 1 online resource (311 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9781630818579.Subject(s): Wireless communication systemsGenre/Form: Electronic books.DDC classification: 621.384 Online resources: Click to View
Contents:
Radio Propagation in the Urban Scenario -- Contents -- Preface -- 1 Introduction -- 1.1 Historical Notes -- 1.2 Electromagnetic Spectrum -- 1.3 Radio, Television, Mobile Telephony, and Wireless Networks -- 1.4 Challenges in the (Electromagnetic) Design of Modern Wireless Networks -- References -- 2 Fundamentals of Electromagnetic Propagation and Radiation -- 2.1 Maxwell's Equations -- 2.1.1 Maxwell's Equations in the Frequency Domain -- 2.1.2 Sinusoidal Vector Fields, Phasor Vectors, and Polarization -- 2.2 Electromagnetic Properties of Materials -- 2.2.1 Power Losses in Materials, Power Flux, and Energy Conservation -- 2.2.2 Dielectric Materials -- 2.2.3 Conductors -- 2.2.4 Perfect Electric Conductors (PECs) -- 2.2.5 Plasma -- 2.2.6 Boundary Between Two Media and Boundary Condition on PEC's Surface -- 2.3 Plane-Wave Propagation, Reflection, and Transmission -- 2.3.1 Homogeneous Plane Waves -- 2.3.2 Nonhomogeneous Plane Waves -- 2.3.3 Plane Waves for Arbitrarily Time-Varying Fields -- 2.3.4 Narrowband Signals and Group Velocity -- 2.3.5 Plane Wave Reflection and Transmission at a Plane Boundary -- 2.3.6 Plane Wave Propagation in Layered Media -- 2.3.7 Plane Wave Propagation in Anisotropic Media -- 2.4 Radiation -- 2.4.1 Elementary Source -- 2.4.2 Radiation from an Arbitrary Current Distribution -- 2.4.3 Far Field -- 2.4.4 Equivalent Problems and Magnetic Sources -- 2.5 Transmitting and Receiving Antennas -- 2.5.1 Parameters of a Transmitting Antenna -- 2.5.2 Parameters of a Receiving Antenna -- 2.5.3 Some Commonly Used Antennas -- 2.5.4 Arrays of Antennas, Phased Arrays, and Beamforming -- 2.6 Friis Formula for Free-Space Radio Links -- 2.6.1 Antenna Noise Temperature and Receiver Noise Figure -- 2.6.2 Example: Downlink in a Satellite Communication System -- References -- 3 Asymptotic Techniques -- 3.1 Geometrical Optics.
3.1.1 Fermat's Principle -- 3.1.2 GO in Homogeneous Media -- 3.1.3 Interface Between Homogeneous Media: Reflected and Transmitted Ray Congruences -- 3.1.4 Example of Inhomogeneous Media: Stratified Medium -- 3.2 Fresnel Ellipsoids -- 3.3 Stationary Phase Method -- 3.3.1 Finite Integration Interval -- 3.3.2 Transition Function -- 3.4 Diffraction -- 3.4.1 Stationary Phase Point Contribution: The GO Field -- 3.4.2 End-Point Contribution: The Edge Diffracted Field -- 3.5 Geometrical Theory of Diffraction and Its Uniform Extension -- 3.5.1 Diffraction from a Perfectly Conducting Wedge: GTD and UTD Solutions -- 3.5.2 Lossy Dielectric Wedge -- 3.6 Rough-Surface Scattering -- 3.6.1 Mean Value of the Scattered Field -- 3.6.2 Variance of the Scattered Field -- References -- 4 Propagation Over a Flat or Spherical Earth -- 4.1 Ground-Wave Propagation and Two-Ray Model -- 4.1.1 Example: Link Between Two Walkie-Talkies -- 4.1.2 Effect of Surface Roughness -- 4.2 Effect of the Earth's Curvature -- 4.3 Atmospheric Effect: Ray Curvature and Effective Earth Radius -- 4.3.1 Example: Link Between Two Walkie-Talkies, Effects of Earth Curvature, and Atmospheric Refraction -- 4.3.2 Atmospheric Ducting and Tropospheric Scattering -- 4.4 Atmospheric Attenuation: Clear Air, Fog, Rain -- 4.4.1 Attenuation by Rain, Fog, and Snow -- 4.5 Ionosphere -- 4.5.1 Ionospheric Reflection and Sky Wave -- 4.5.2 Effect of the Earth's Magnetic Field on Ionospheric Propagation -- 4.5.3 Ionosphere and Electromagnetic Wave Propagation: Summary -- References -- 5 Propagation in Complex Environments -- 5.1 LOS and Non-LOS (NLOS) Propagation -- 5.1.1 Reflection on and Transmission Through a Homogeneous Wall -- 5.2 Multipath -- 5.2.1 Narrowband Characterization of the Multipath Channel -- 5.2.2 Wideband Characterization of the Multipath Channel -- 5.3 Fading -- 5.3.1 NLOS: Rayleigh Fading.
5.3.2 LOS: Rician Fading -- 5.3.3 Slow Fading: Lognormal Distribution -- 5.3.4 Example: Outage Probability in Rayleigh Fading -- 5.4 Delay Spread -- 5.4.1 Example: Delay Spread in Urban Areas and Mobile Telephone Systems -- References -- 6 Propagation in Urban Areas -- 6.1 Urban Area Propagation Scenarios: Outdoor and Indoor -- 6.2 Empirical Propagation Models -- 6.2.1 Outdoor -- 6.2.2 Indoor -- 6.2.3 Example: Downlink in a 4G LTE Mobile Phone System -- 6.2.4 Coverage Area and Location Probability -- 6.3 Urban Canyon as a "Roofless Waveguide" -- 6.4 Ray-Tracing Methods -- References -- 7 Ray-Tracing Tool Example -- 7.1 Vertical-Plane Launching Implementation -- 7.1.1 Ray Definition -- 7.1.2 Space scanning -- 7.1.3 Electromagnetic Modeling -- 7.1.4 Coherent Versus Incoherent Summation -- 7.2 Input, Output, and Processing Time -- 7.2.1 Input -- 7.2.2 Output -- 7.2.3 Processing Time -- 7.2.4 Advantages and Limits -- 7.3 Measurement Issues -- 7.4 Comparison of Solver Predictions and Measured Data -- References -- 8 New Propagation Scenarios in 5G Telecommunication Systems -- 8.1 Description of 5G Networks and Expected Performance -- 8.2 Millimeter-Wave Propagation -- 8.2.1 Empirical Channel Models -- 8.2.2 Ray Tracing -- 8.2.3 Example: Downlink in a High-Band 5G Wireless System -- 8.3 Beamforming -- References -- 9 Regulations on the Exposure of General Public to Electromagnetic Fields -- 9.1 ICNIRP Guidelines -- 9.1.1 Basic Restrictions -- 9.1.2 Reference Levels -- 9.2 IEEE Standard -- 9.2.1 DRLs -- 9.2.2 ERLs -- 9.3 Exposure Limits in Countries Across the World -- 9.3.1 Exposure Limits in Italy -- 9.3.2 Exposure Limits in the United States -- References -- 10 Conclusion and Future Perspectives -- References -- Appendix A: Vector Analysis -- A.1 Vector Multiplications -- A.2 Differential Relationships -- A.3 Integral Relationships.
A.4 Cartesian Coordinates -- A.5 Cylindrical Coordinates -- A.6 Spherical Coordinates -- A.7 Matrices -- Appendix B: Dirac Pulse -- Appendix C: Useful Integrals -- Appendix D: Derivation of the Transition Function for the Uniform Geometrical Theory of Diffraction -- About the Authors -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Radio Propagation in the Urban Scenario -- Contents -- Preface -- 1 Introduction -- 1.1 Historical Notes -- 1.2 Electromagnetic Spectrum -- 1.3 Radio, Television, Mobile Telephony, and Wireless Networks -- 1.4 Challenges in the (Electromagnetic) Design of Modern Wireless Networks -- References -- 2 Fundamentals of Electromagnetic Propagation and Radiation -- 2.1 Maxwell's Equations -- 2.1.1 Maxwell's Equations in the Frequency Domain -- 2.1.2 Sinusoidal Vector Fields, Phasor Vectors, and Polarization -- 2.2 Electromagnetic Properties of Materials -- 2.2.1 Power Losses in Materials, Power Flux, and Energy Conservation -- 2.2.2 Dielectric Materials -- 2.2.3 Conductors -- 2.2.4 Perfect Electric Conductors (PECs) -- 2.2.5 Plasma -- 2.2.6 Boundary Between Two Media and Boundary Condition on PEC's Surface -- 2.3 Plane-Wave Propagation, Reflection, and Transmission -- 2.3.1 Homogeneous Plane Waves -- 2.3.2 Nonhomogeneous Plane Waves -- 2.3.3 Plane Waves for Arbitrarily Time-Varying Fields -- 2.3.4 Narrowband Signals and Group Velocity -- 2.3.5 Plane Wave Reflection and Transmission at a Plane Boundary -- 2.3.6 Plane Wave Propagation in Layered Media -- 2.3.7 Plane Wave Propagation in Anisotropic Media -- 2.4 Radiation -- 2.4.1 Elementary Source -- 2.4.2 Radiation from an Arbitrary Current Distribution -- 2.4.3 Far Field -- 2.4.4 Equivalent Problems and Magnetic Sources -- 2.5 Transmitting and Receiving Antennas -- 2.5.1 Parameters of a Transmitting Antenna -- 2.5.2 Parameters of a Receiving Antenna -- 2.5.3 Some Commonly Used Antennas -- 2.5.4 Arrays of Antennas, Phased Arrays, and Beamforming -- 2.6 Friis Formula for Free-Space Radio Links -- 2.6.1 Antenna Noise Temperature and Receiver Noise Figure -- 2.6.2 Example: Downlink in a Satellite Communication System -- References -- 3 Asymptotic Techniques -- 3.1 Geometrical Optics.

3.1.1 Fermat's Principle -- 3.1.2 GO in Homogeneous Media -- 3.1.3 Interface Between Homogeneous Media: Reflected and Transmitted Ray Congruences -- 3.1.4 Example of Inhomogeneous Media: Stratified Medium -- 3.2 Fresnel Ellipsoids -- 3.3 Stationary Phase Method -- 3.3.1 Finite Integration Interval -- 3.3.2 Transition Function -- 3.4 Diffraction -- 3.4.1 Stationary Phase Point Contribution: The GO Field -- 3.4.2 End-Point Contribution: The Edge Diffracted Field -- 3.5 Geometrical Theory of Diffraction and Its Uniform Extension -- 3.5.1 Diffraction from a Perfectly Conducting Wedge: GTD and UTD Solutions -- 3.5.2 Lossy Dielectric Wedge -- 3.6 Rough-Surface Scattering -- 3.6.1 Mean Value of the Scattered Field -- 3.6.2 Variance of the Scattered Field -- References -- 4 Propagation Over a Flat or Spherical Earth -- 4.1 Ground-Wave Propagation and Two-Ray Model -- 4.1.1 Example: Link Between Two Walkie-Talkies -- 4.1.2 Effect of Surface Roughness -- 4.2 Effect of the Earth's Curvature -- 4.3 Atmospheric Effect: Ray Curvature and Effective Earth Radius -- 4.3.1 Example: Link Between Two Walkie-Talkies, Effects of Earth Curvature, and Atmospheric Refraction -- 4.3.2 Atmospheric Ducting and Tropospheric Scattering -- 4.4 Atmospheric Attenuation: Clear Air, Fog, Rain -- 4.4.1 Attenuation by Rain, Fog, and Snow -- 4.5 Ionosphere -- 4.5.1 Ionospheric Reflection and Sky Wave -- 4.5.2 Effect of the Earth's Magnetic Field on Ionospheric Propagation -- 4.5.3 Ionosphere and Electromagnetic Wave Propagation: Summary -- References -- 5 Propagation in Complex Environments -- 5.1 LOS and Non-LOS (NLOS) Propagation -- 5.1.1 Reflection on and Transmission Through a Homogeneous Wall -- 5.2 Multipath -- 5.2.1 Narrowband Characterization of the Multipath Channel -- 5.2.2 Wideband Characterization of the Multipath Channel -- 5.3 Fading -- 5.3.1 NLOS: Rayleigh Fading.

5.3.2 LOS: Rician Fading -- 5.3.3 Slow Fading: Lognormal Distribution -- 5.3.4 Example: Outage Probability in Rayleigh Fading -- 5.4 Delay Spread -- 5.4.1 Example: Delay Spread in Urban Areas and Mobile Telephone Systems -- References -- 6 Propagation in Urban Areas -- 6.1 Urban Area Propagation Scenarios: Outdoor and Indoor -- 6.2 Empirical Propagation Models -- 6.2.1 Outdoor -- 6.2.2 Indoor -- 6.2.3 Example: Downlink in a 4G LTE Mobile Phone System -- 6.2.4 Coverage Area and Location Probability -- 6.3 Urban Canyon as a "Roofless Waveguide" -- 6.4 Ray-Tracing Methods -- References -- 7 Ray-Tracing Tool Example -- 7.1 Vertical-Plane Launching Implementation -- 7.1.1 Ray Definition -- 7.1.2 Space scanning -- 7.1.3 Electromagnetic Modeling -- 7.1.4 Coherent Versus Incoherent Summation -- 7.2 Input, Output, and Processing Time -- 7.2.1 Input -- 7.2.2 Output -- 7.2.3 Processing Time -- 7.2.4 Advantages and Limits -- 7.3 Measurement Issues -- 7.4 Comparison of Solver Predictions and Measured Data -- References -- 8 New Propagation Scenarios in 5G Telecommunication Systems -- 8.1 Description of 5G Networks and Expected Performance -- 8.2 Millimeter-Wave Propagation -- 8.2.1 Empirical Channel Models -- 8.2.2 Ray Tracing -- 8.2.3 Example: Downlink in a High-Band 5G Wireless System -- 8.3 Beamforming -- References -- 9 Regulations on the Exposure of General Public to Electromagnetic Fields -- 9.1 ICNIRP Guidelines -- 9.1.1 Basic Restrictions -- 9.1.2 Reference Levels -- 9.2 IEEE Standard -- 9.2.1 DRLs -- 9.2.2 ERLs -- 9.3 Exposure Limits in Countries Across the World -- 9.3.1 Exposure Limits in Italy -- 9.3.2 Exposure Limits in the United States -- References -- 10 Conclusion and Future Perspectives -- References -- Appendix A: Vector Analysis -- A.1 Vector Multiplications -- A.2 Differential Relationships -- A.3 Integral Relationships.

A.4 Cartesian Coordinates -- A.5 Cylindrical Coordinates -- A.6 Spherical Coordinates -- A.7 Matrices -- Appendix B: Dirac Pulse -- Appendix C: Useful Integrals -- Appendix D: Derivation of the Transition Function for the Uniform Geometrical Theory of Diffraction -- About the Authors -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.