IUKL Library
Normal view MARC view ISBD view

Stochastic geometry for wireless networks [electronic resource] / Martin Haenggi.

By: Haenggi, Martin.
Contributor(s): ProQuest (Firm).
Material type: materialTypeLabelBookPublisher: Cambridge : Cambridge University Press, 2013Description: xv, 284 p. : ill.Subject(s): Wireless communication systems -- Mathematics | Stochastic modelsGenre/Form: Electronic books.DDC classification: 621.39/80151922 Online resources: Click to View
Contents:
Machine generated contents note: Part I. Point Process Theory: 1. Introduction; 2. Description of point processes; 3. Point process models; 4. Sums and products over point processes; 5. Interference and outage in wireless networks; 6. Moment measures of point processes; 7. Marked point processes; 8. Conditioning and Palm theory; Part II. Percolation, Connectivity and Coverage: 9. Introduction; 10. Bond and site percolation; 11. Random geometric graphs and continuum percolation; 12. Connectivity; 13. Coverage; Appendix: introduction to R.
Summary: "Covering point process theory, random geometric graphs and coverage processes, this rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects. Practical engineering applications are integrated with mathematical theory, with an understanding of probability the only prerequisite. At the same time, stochastic geometry is connected to percolation theory and the theory of random geometric graphs and accompanied by a brief introduction to the R statistical computing language. Combining theory and hands-on analytical techniques with practical examples and exercises, this is a comprehensive guide to the spatial stochastic models essential for modelling and analysis of wireless network performance"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=1042477 1 Available
Total holds: 0

Includes bibliographical references and index.

Machine generated contents note: Part I. Point Process Theory: 1. Introduction; 2. Description of point processes; 3. Point process models; 4. Sums and products over point processes; 5. Interference and outage in wireless networks; 6. Moment measures of point processes; 7. Marked point processes; 8. Conditioning and Palm theory; Part II. Percolation, Connectivity and Coverage: 9. Introduction; 10. Bond and site percolation; 11. Random geometric graphs and continuum percolation; 12. Connectivity; 13. Coverage; Appendix: introduction to R.

"Covering point process theory, random geometric graphs and coverage processes, this rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects. Practical engineering applications are integrated with mathematical theory, with an understanding of probability the only prerequisite. At the same time, stochastic geometry is connected to percolation theory and the theory of random geometric graphs and accompanied by a brief introduction to the R statistical computing language. Combining theory and hands-on analytical techniques with practical examples and exercises, this is a comprehensive guide to the spatial stochastic models essential for modelling and analysis of wireless network performance"-- Provided by publisher.

Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.