IUKL Library
Normal view MARC view ISBD view

Compressive Sensing for Wireless Communication : Challenges and Opportunities.

By: Sankararajan, Radha.
Material type: materialTypeLabelBookPublisher: Aalborg : River Publishers, 2016Copyright date: �2016Edition: 1st ed.Description: 1 online resource (494 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9788793379862.Subject(s): Wireless communication systemsGenre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Front Cover -- Half Title -- RIVER PUBLISHERS SERIES IN COMMUNICATIONS -- Title page - Compressive Sensingf or Wireless Communication: Challenges and Opportunities -- Copyright Page -- Content -- Preface -- Acknowledgement -- List of Figures -- List of Tables -- List of Algorithms -- List of Abbreviations -- Chapter 1 - Introduction -- 1.1 Overview -- 1.2 Motivation -- 1.3 Traditional Sampling -- 1.4 Conventional Data Acquisition System -- 1.4.1 Data Acquisition System -- 1.4.2 Functional Components of DAQ -- 1.4.3 Digital Image Acquisition -- 1.5 Transform Coding -- 1.5.1 Need for Transform Coding -- 1.5.2 Drawbacks of Transform Coding -- 1.6 Compressed Sensing -- 1.6.1 Sparsity and Signal Recovery -- 1.6.2 CS Recovery Algorithms -- 1.6.3 Compressed Sensing for Audio -- 1.6.4 Compressed Sensing for Image -- 1.6.5 Compressed Sensing for Video -- 1.6.6 Compressed Sensing for Computer Vision -- 1.6.7 Compressed Sensing for Cognitive Radio Networks -- 1.6.8 Compressed Sensing for Wireless Networks -- 1.6.9 Compressed Sensing for Wireless Sensor Networks -- 1.7 Book Outline -- References -- Chapter 2 - Compressed Sensing: Sparsity and Signal Recovery -- 2.1 Introduction -- 2.2 Compressed Sensing -- 2.2.1 Compressed Sensing Process -- 2.2.2 What Is the Need for Compressed Sensing? -- 2.2.3 Adaptations of CS Theory -- 2.2.4 Mathematical Background -- 2.2.5 Sparse Filtering and Dynamic Compressed Sensing -- 2.3 Signal Representation -- 2.3.1 Sparsity -- 2.4 Basis Vectors -- 2.4.1 Fourier Transform -- 2.4.2 Discrete Cosine Transform -- 2.4.3 DiscreteWavelet Transform -- 2.4.4 Curvelet Transform -- 2.4.5 Contourlet Transform -- 2.4.6 Surfacelet Transform -- 2.4.7 Karhunen-Lo�eve Theorem -- 2.5 Restricted Isometry Property -- 2.6 Coherence -- 2.7 Stable Recovery -- 2.8 Number of Measurements -- 2.9 Sensing Matrix -- 2.9.1 Null-Space Conditions.
2.9.2 Restricted Isometry Property -- 2.9.3 Gaussian Matrix -- 2.9.4 Toeplitz and Circulant Matrix -- 2.9.5 Binomial Sampling Matrix -- 2.9.6 Structured Random Matrix -- 2.9.7 Kronecker Product Matrix -- 2.9.8 Combination Matrix -- 2.9.9 Hybrid Matrix -- 2.10 Sparse Recovery Algorithms -- 2.10.1 Signal Recovery in Noise -- 2.11 Applications of Compressed Sensing -- 2.12 Summary -- References -- Chapter 3 - Recovery Algorithms -- 3.1 Introduction -- 3.2 Conditions for Perfect Recovery -- 3.2.1 Sensing Matrices -- 3.2.1.1 Null-space conditions -- 3.2.1.2 The restricted isometry property -- 3.2.2 Sensing Matrix Constructions -- 3.3 L1 Minimization -- 3.3.1 L1 Minimization Algorithms -- 3.4 Greedy Algorithms -- 3.4.1 Matching Pursuit (MP) -- 3.4.1.1 Orthogonal matching pursuit (OMP) -- 3.4.1.2 Directional pursuits -- 3.4.1.3 Gradient pursuits -- 3.4.1.4 StOMP -- 3.4.1.5 ROMP -- 3.4.1.6 CoSaMP -- 3.4.1.7 Subspace pursuit (SP) -- 3.5 Iterative Hard Thresholding -- 3.5.1 Empirical Comparisons -- 3.6 FOCUSS -- 3.7 MUSIC -- 3.8 Model-based Algorithms -- 3.8.1 Model-based CoSaMP -- 3.8.2 Model-based IHT -- 3.9 Non-Iterative Algorithms for Image-Processing Applications -- 3.9.1 Advantages of Non-Iterative Algorithms -- 3.9.2 Non-Iterative Procedures for Recovery -- 3.9.2.1 Procedure I -- 3.9.2.2 Procedure II -- 3.9.2.3 Procedure III -- 3.9.3 NITRA -- 3.9.4 R3A -- 3.9.4.1 R3A-based StOMP -- 3.9.5 SPMT -- 3.9.5.1 SPMT for reconstruction of images and videos -- 3.10 Summary -- References -- Chapter 4 - Compressive Sensing for Audio and Speech Signals -- 4.1 Introduction -- 4.1.1 Issues in Applying CS and Sparse Decompositions to Speech and Audio Signals -- 4.2 Multiple Sensors Audio Model -- 4.2.1 Reconstruction of Real, Non-Sparse Audio Signals -- 4.2.2 Detection and Estimation of Truly Sparse Audio Signals.
4.3 Compressive Sensing Framework for Speech Signal Synthesis -- 4.3.1 DFT and LPC Transform Domain -- 4.3.2 Hybrid Dictionary -- 4.3.3 Level of Sparsity -- 4.3.4 Remarks -- 4.4 CS Reconstruction of the Speech and Musical Signals -- 4.4.1 Recovery of Audio Signals with Compressed Sensing -- 4.5 Noise Reduction in Speech and Audio Signals -- 4.5.1 Data Sparsity of Speech Signals -- 4.5.2 Formulation of the Optimization Problem for Speech Noise Reduction -- 4.5.3 Solutions to the Optimization Problem -- 4.6 DCT Compressive Sampling of Frequency-Sparse Audio Signals -- 4.6.1 Performance of Compressive Sensing for Speech Signal with Combined Basis -- 4.7 Single-Channel and Multi-Channel Sinusoidal Audio Coding Using CS -- 4.7.1 Sinusoidal Model -- 4.7.2 Single-Channel Sinusoidal Selection -- 4.7.3 Multi-Channel Sinusoidal Selection -- 4.8 Compressive Sensing for Speech Signal with Orthogonal Symmetric Toeplitz Matrix -- 4.8.1 Orthogonal Symmetric Toeplitz Matrices (OSTM) -- 4.9 Sparse Representations for Speech Recognition -- 4.9.1 An EBW Compressed Sensing Algorithm -- 4.9.2 Line Search A-Functions -- 4.9.3 An Analysis of Sparseness and Regularization in Exemplar-based Methods for Speech Classification -- 4.10 Speaker Identification Using Sparsely Excited Speech Signals and Compressed Sensing -- 4.10.1 Sparsely Excited Speech -- 4.10.2 GMM Speaker Identification -- 4.10.3 Speaker Identification Using CS -- 4.11 Joint Speech-Encoding Technology Based on Compressed Sensing -- 4.11.1 Joint Speech-Encoding Scheme -- 4.11.2 Wavelet Transform -- 4.11.3 PCM -- 4.12 Applications of Compressed Sensing to Speech Coding Based on Sparse Linear Prediction -- 4.12.1 Compressed Sensing Formulation for Speech Coding -- 4.13 Summary -- References -- Chapter 5 - Compressive Sensing for Images -- 5.1 Introduction -- 5.2 Compressive Sensing for Image Fusion.
5.2.1 Multi-Resolution Image Fusion -- 5.2.2 Multi-Focus Image Fusion -- 5.3 Compressive Sensing for Image Compression -- 5.4 Compressive Sensing for Image Denoising -- 5.5 Compressive Sensing Image Reconstruction -- 5.6 Compressive Sensing for Imaging Applications -- 5.6.1 Compressive Magnetic Resonance Imaging -- 5.6.2 Compressive Synthetic Aperture Radar Imaging -- 5.6.3 Compressive Passive MillimeterWave Imaging -- 5.6.4 Compressive Light Transport System -- 5.7 Single-Pixel Camera -- 5.8 Lensless Imaging by Compressive Sensing -- 5.8.1 Lensless Imaging Architecture -- 5.8.1.1 Compressive measurements -- 5.8.1.2 Selection of aperture assembly -- 5.8.2 Prototype for Lensless Imaging -- 5.9 Case Study: Image Transmission in WMSN -- 5.10 Summary -- References -- Chpater 6 - Compressive Sensing for Computer Vision -- 6.1 Introduction -- 6.2 Object Detection Techniques -- 6.2.1 Optical Flow -- 6.2.2 Temporal Difference -- 6.2.3 Background Subtraction -- 6.3 Object-Tracking Techniques -- 6.3.1 Point Tracking -- 6.3.2 Kernel Tracking -- 6.3.3 Silhouette Tracking -- 6.4 Compressive Video Processing -- 6.4.1 CS Based on the DCT Approach -- 6.4.2 CS Based on the DWT Approach -- 6.4.3 CS Based on the Hybrid DWT-DCT Approach -- 6.5 Compressive Sensing for Background Subtraction -- 6.6 Compressive Sensing for Object Detection -- 6.6.1 Sparsity of Background Subtracted Images -- 6.6.2 The Background Constraint -- 6.6.3 Object Detector Based on CS -- 6.6.4 Foreground Reconstruction -- 6.6.5 Adaptation of the Background Constraint -- 6.7 Compressive Sensing for Object Recognition -- 6.8 Compressive Sensing Target Tracking -- 6.8.1 Kalman Filtered Compressive Sensing -- 6.8.2 Joint Compressive Video Coding and Analysis -- 6.8.3 Compressive Sensing for Multi-ViewTracking -- 6.8.4 Compressive Particle Filtering.
6.9 Surveillance Video Processing Using Compressive Sensing -- 6.10 Performance Metrics -- 6.11 Summary -- References -- Chapter 7 - Compressed Sensing for Wireless Networks -- 7.1 Wireless Networks -- 7.1.1 Categories of Wireless Networks -- 7.1.1.1 3G cellular networks -- 7.1.1.2 WiMAX network -- 7.1.1.3 WiFi networks -- 7.1.1.4 Wireless Ad hoc networks -- 7.1.1.5 Wireless sensor networks -- 7.1.2 Advanced Wireless Technologies -- 7.1.2.1 OFDM technology -- 7.1.2.2 Multiple antenna systems -- 7.2 CS-based Wireless Communication -- 7.2.1 Multi-Path Channel Estimation -- 7.2.1.1 Channel model and training-based model -- 7.2.1.2 Compressed channel sensing -- 7.2.2 Random Field Estimation -- 7.2.2.1 Random field model -- 7.2.2.2 Matrix completion algorithm -- 7.2.3 Other Channel Estimation Models -- 7.2.3.1 Blind channel estimation -- 7.2.3.2 Adaptive algorithm -- 7.2.3.3 Group sparsity method -- 7.3 Multiple Access -- 7.3.1 Multiuser Detection -- 7.3.1.1 Comparison between multiuser detection and compressive sensing -- 7.3.1.2 Algorithm for multiuser detection -- 7.3.2 Multiuser Access in Cellular Systems -- 7.3.2.1 Uplink -- 7.3.2.2 Downlink -- 7.4 Summary -- References -- Chapter 8 - Compressive Spectrum Sensing for Cognitive Radio Networks -- 8.1 Introduction -- 8.2 Cognitive Radio and Dynamic Spectrum Access -- 8.2.1 Dynamic Spectrum Access -- 8.2.2 Cognitive Radio -- 8.2.3 Cognitive Radio Architectures -- 8.2.4 Physical Architecture of Cognitive Radio -- 8.3 Spectrum Sensing for Cognitive Radio -- 8.3.1 Spectrum Sensing Techniques -- 8.3.2 Cooperative Spectrum Sensing -- 8.4 Compressed Sensing in Cognitive Radio -- 8.5 Collaborative Compressed Spectrum Sensing -- 8.6 Distributed Compressed Spectrum Sensing -- 8.7 Compressive Sensing for Wideband Cognitive Radios -- 8.8 Research Challenges -- 8.8.1 Sparse Basis Selection.
8.8.2 Adaptive Wideband Sensing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=30169260 1 Available
Total holds: 0

Intro -- Front Cover -- Half Title -- RIVER PUBLISHERS SERIES IN COMMUNICATIONS -- Title page - Compressive Sensingf or Wireless Communication: Challenges and Opportunities -- Copyright Page -- Content -- Preface -- Acknowledgement -- List of Figures -- List of Tables -- List of Algorithms -- List of Abbreviations -- Chapter 1 - Introduction -- 1.1 Overview -- 1.2 Motivation -- 1.3 Traditional Sampling -- 1.4 Conventional Data Acquisition System -- 1.4.1 Data Acquisition System -- 1.4.2 Functional Components of DAQ -- 1.4.3 Digital Image Acquisition -- 1.5 Transform Coding -- 1.5.1 Need for Transform Coding -- 1.5.2 Drawbacks of Transform Coding -- 1.6 Compressed Sensing -- 1.6.1 Sparsity and Signal Recovery -- 1.6.2 CS Recovery Algorithms -- 1.6.3 Compressed Sensing for Audio -- 1.6.4 Compressed Sensing for Image -- 1.6.5 Compressed Sensing for Video -- 1.6.6 Compressed Sensing for Computer Vision -- 1.6.7 Compressed Sensing for Cognitive Radio Networks -- 1.6.8 Compressed Sensing for Wireless Networks -- 1.6.9 Compressed Sensing for Wireless Sensor Networks -- 1.7 Book Outline -- References -- Chapter 2 - Compressed Sensing: Sparsity and Signal Recovery -- 2.1 Introduction -- 2.2 Compressed Sensing -- 2.2.1 Compressed Sensing Process -- 2.2.2 What Is the Need for Compressed Sensing? -- 2.2.3 Adaptations of CS Theory -- 2.2.4 Mathematical Background -- 2.2.5 Sparse Filtering and Dynamic Compressed Sensing -- 2.3 Signal Representation -- 2.3.1 Sparsity -- 2.4 Basis Vectors -- 2.4.1 Fourier Transform -- 2.4.2 Discrete Cosine Transform -- 2.4.3 DiscreteWavelet Transform -- 2.4.4 Curvelet Transform -- 2.4.5 Contourlet Transform -- 2.4.6 Surfacelet Transform -- 2.4.7 Karhunen-Lo�eve Theorem -- 2.5 Restricted Isometry Property -- 2.6 Coherence -- 2.7 Stable Recovery -- 2.8 Number of Measurements -- 2.9 Sensing Matrix -- 2.9.1 Null-Space Conditions.

2.9.2 Restricted Isometry Property -- 2.9.3 Gaussian Matrix -- 2.9.4 Toeplitz and Circulant Matrix -- 2.9.5 Binomial Sampling Matrix -- 2.9.6 Structured Random Matrix -- 2.9.7 Kronecker Product Matrix -- 2.9.8 Combination Matrix -- 2.9.9 Hybrid Matrix -- 2.10 Sparse Recovery Algorithms -- 2.10.1 Signal Recovery in Noise -- 2.11 Applications of Compressed Sensing -- 2.12 Summary -- References -- Chapter 3 - Recovery Algorithms -- 3.1 Introduction -- 3.2 Conditions for Perfect Recovery -- 3.2.1 Sensing Matrices -- 3.2.1.1 Null-space conditions -- 3.2.1.2 The restricted isometry property -- 3.2.2 Sensing Matrix Constructions -- 3.3 L1 Minimization -- 3.3.1 L1 Minimization Algorithms -- 3.4 Greedy Algorithms -- 3.4.1 Matching Pursuit (MP) -- 3.4.1.1 Orthogonal matching pursuit (OMP) -- 3.4.1.2 Directional pursuits -- 3.4.1.3 Gradient pursuits -- 3.4.1.4 StOMP -- 3.4.1.5 ROMP -- 3.4.1.6 CoSaMP -- 3.4.1.7 Subspace pursuit (SP) -- 3.5 Iterative Hard Thresholding -- 3.5.1 Empirical Comparisons -- 3.6 FOCUSS -- 3.7 MUSIC -- 3.8 Model-based Algorithms -- 3.8.1 Model-based CoSaMP -- 3.8.2 Model-based IHT -- 3.9 Non-Iterative Algorithms for Image-Processing Applications -- 3.9.1 Advantages of Non-Iterative Algorithms -- 3.9.2 Non-Iterative Procedures for Recovery -- 3.9.2.1 Procedure I -- 3.9.2.2 Procedure II -- 3.9.2.3 Procedure III -- 3.9.3 NITRA -- 3.9.4 R3A -- 3.9.4.1 R3A-based StOMP -- 3.9.5 SPMT -- 3.9.5.1 SPMT for reconstruction of images and videos -- 3.10 Summary -- References -- Chapter 4 - Compressive Sensing for Audio and Speech Signals -- 4.1 Introduction -- 4.1.1 Issues in Applying CS and Sparse Decompositions to Speech and Audio Signals -- 4.2 Multiple Sensors Audio Model -- 4.2.1 Reconstruction of Real, Non-Sparse Audio Signals -- 4.2.2 Detection and Estimation of Truly Sparse Audio Signals.

4.3 Compressive Sensing Framework for Speech Signal Synthesis -- 4.3.1 DFT and LPC Transform Domain -- 4.3.2 Hybrid Dictionary -- 4.3.3 Level of Sparsity -- 4.3.4 Remarks -- 4.4 CS Reconstruction of the Speech and Musical Signals -- 4.4.1 Recovery of Audio Signals with Compressed Sensing -- 4.5 Noise Reduction in Speech and Audio Signals -- 4.5.1 Data Sparsity of Speech Signals -- 4.5.2 Formulation of the Optimization Problem for Speech Noise Reduction -- 4.5.3 Solutions to the Optimization Problem -- 4.6 DCT Compressive Sampling of Frequency-Sparse Audio Signals -- 4.6.1 Performance of Compressive Sensing for Speech Signal with Combined Basis -- 4.7 Single-Channel and Multi-Channel Sinusoidal Audio Coding Using CS -- 4.7.1 Sinusoidal Model -- 4.7.2 Single-Channel Sinusoidal Selection -- 4.7.3 Multi-Channel Sinusoidal Selection -- 4.8 Compressive Sensing for Speech Signal with Orthogonal Symmetric Toeplitz Matrix -- 4.8.1 Orthogonal Symmetric Toeplitz Matrices (OSTM) -- 4.9 Sparse Representations for Speech Recognition -- 4.9.1 An EBW Compressed Sensing Algorithm -- 4.9.2 Line Search A-Functions -- 4.9.3 An Analysis of Sparseness and Regularization in Exemplar-based Methods for Speech Classification -- 4.10 Speaker Identification Using Sparsely Excited Speech Signals and Compressed Sensing -- 4.10.1 Sparsely Excited Speech -- 4.10.2 GMM Speaker Identification -- 4.10.3 Speaker Identification Using CS -- 4.11 Joint Speech-Encoding Technology Based on Compressed Sensing -- 4.11.1 Joint Speech-Encoding Scheme -- 4.11.2 Wavelet Transform -- 4.11.3 PCM -- 4.12 Applications of Compressed Sensing to Speech Coding Based on Sparse Linear Prediction -- 4.12.1 Compressed Sensing Formulation for Speech Coding -- 4.13 Summary -- References -- Chapter 5 - Compressive Sensing for Images -- 5.1 Introduction -- 5.2 Compressive Sensing for Image Fusion.

5.2.1 Multi-Resolution Image Fusion -- 5.2.2 Multi-Focus Image Fusion -- 5.3 Compressive Sensing for Image Compression -- 5.4 Compressive Sensing for Image Denoising -- 5.5 Compressive Sensing Image Reconstruction -- 5.6 Compressive Sensing for Imaging Applications -- 5.6.1 Compressive Magnetic Resonance Imaging -- 5.6.2 Compressive Synthetic Aperture Radar Imaging -- 5.6.3 Compressive Passive MillimeterWave Imaging -- 5.6.4 Compressive Light Transport System -- 5.7 Single-Pixel Camera -- 5.8 Lensless Imaging by Compressive Sensing -- 5.8.1 Lensless Imaging Architecture -- 5.8.1.1 Compressive measurements -- 5.8.1.2 Selection of aperture assembly -- 5.8.2 Prototype for Lensless Imaging -- 5.9 Case Study: Image Transmission in WMSN -- 5.10 Summary -- References -- Chpater 6 - Compressive Sensing for Computer Vision -- 6.1 Introduction -- 6.2 Object Detection Techniques -- 6.2.1 Optical Flow -- 6.2.2 Temporal Difference -- 6.2.3 Background Subtraction -- 6.3 Object-Tracking Techniques -- 6.3.1 Point Tracking -- 6.3.2 Kernel Tracking -- 6.3.3 Silhouette Tracking -- 6.4 Compressive Video Processing -- 6.4.1 CS Based on the DCT Approach -- 6.4.2 CS Based on the DWT Approach -- 6.4.3 CS Based on the Hybrid DWT-DCT Approach -- 6.5 Compressive Sensing for Background Subtraction -- 6.6 Compressive Sensing for Object Detection -- 6.6.1 Sparsity of Background Subtracted Images -- 6.6.2 The Background Constraint -- 6.6.3 Object Detector Based on CS -- 6.6.4 Foreground Reconstruction -- 6.6.5 Adaptation of the Background Constraint -- 6.7 Compressive Sensing for Object Recognition -- 6.8 Compressive Sensing Target Tracking -- 6.8.1 Kalman Filtered Compressive Sensing -- 6.8.2 Joint Compressive Video Coding and Analysis -- 6.8.3 Compressive Sensing for Multi-ViewTracking -- 6.8.4 Compressive Particle Filtering.

6.9 Surveillance Video Processing Using Compressive Sensing -- 6.10 Performance Metrics -- 6.11 Summary -- References -- Chapter 7 - Compressed Sensing for Wireless Networks -- 7.1 Wireless Networks -- 7.1.1 Categories of Wireless Networks -- 7.1.1.1 3G cellular networks -- 7.1.1.2 WiMAX network -- 7.1.1.3 WiFi networks -- 7.1.1.4 Wireless Ad hoc networks -- 7.1.1.5 Wireless sensor networks -- 7.1.2 Advanced Wireless Technologies -- 7.1.2.1 OFDM technology -- 7.1.2.2 Multiple antenna systems -- 7.2 CS-based Wireless Communication -- 7.2.1 Multi-Path Channel Estimation -- 7.2.1.1 Channel model and training-based model -- 7.2.1.2 Compressed channel sensing -- 7.2.2 Random Field Estimation -- 7.2.2.1 Random field model -- 7.2.2.2 Matrix completion algorithm -- 7.2.3 Other Channel Estimation Models -- 7.2.3.1 Blind channel estimation -- 7.2.3.2 Adaptive algorithm -- 7.2.3.3 Group sparsity method -- 7.3 Multiple Access -- 7.3.1 Multiuser Detection -- 7.3.1.1 Comparison between multiuser detection and compressive sensing -- 7.3.1.2 Algorithm for multiuser detection -- 7.3.2 Multiuser Access in Cellular Systems -- 7.3.2.1 Uplink -- 7.3.2.2 Downlink -- 7.4 Summary -- References -- Chapter 8 - Compressive Spectrum Sensing for Cognitive Radio Networks -- 8.1 Introduction -- 8.2 Cognitive Radio and Dynamic Spectrum Access -- 8.2.1 Dynamic Spectrum Access -- 8.2.2 Cognitive Radio -- 8.2.3 Cognitive Radio Architectures -- 8.2.4 Physical Architecture of Cognitive Radio -- 8.3 Spectrum Sensing for Cognitive Radio -- 8.3.1 Spectrum Sensing Techniques -- 8.3.2 Cooperative Spectrum Sensing -- 8.4 Compressed Sensing in Cognitive Radio -- 8.5 Collaborative Compressed Spectrum Sensing -- 8.6 Distributed Compressed Spectrum Sensing -- 8.7 Compressive Sensing for Wideband Cognitive Radios -- 8.8 Research Challenges -- 8.8.1 Sparse Basis Selection.

8.8.2 Adaptive Wideband Sensing.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.