000 05925nam a2200709 a 4500
001 EBC954643
003 MiAaPQ
005 20180702100642.0
007 cr cn |||m|||a
008 120913s2012 nyua foab 001 0 eng d
020 _a9781606503522 (electronic bk.)
020 _a1606503529 (electronic bk.)
020 _z9781606503508 (print)
020 _z1606503502 (print)
024 7 _a10.5643/9781606503522
_2doi
035 _a(OCoLC)809804677
035 _a(CaBNvSL)swl00401257
035 _a(MiAaPQ)EBC954643
035 _a(Au-PeEL)EBL954643
035 _a(CaPaEBR)ebr10588196
035 _a(CaONFJC)MIL420849
035 _a(OCoLC)830170650
040 _aMiAaPQ
_cMiAaPQ
_dMiAaPQ
050 4 _aQD96.N8
_bA668 2012
082 0 4 _a543.0877
_223
100 1 _aApperley, David C.
245 1 0 _aSolid-state NMR
_h[electronic resource] :
_bbasic principles & practice /
_cDavid C. Apperley, Robin K. Harris & Paul Hodgkinson.
260 _a[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
_bMomentum Press,
_c2012.
300 _a1 electronic text (xiv, 276 p.) :
_bill., digital file.
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- About the authors --
505 8 _a1. Introduction -- 1.1 The utility of NMR -- 1.2 A preview of solid-state NMR spectra -- 1.3 The solid state -- 1.4 Polymorphism, solvates, co-crystals & host:guest systems -- 1.5 NMR of solids & the periodic table --
505 8 _a2. Basic NMR concepts for solids -- 2.1 Nuclear spin magnetization -- 2.2 Tensors -- 2.3 Shielding -- 2.4 Indirect coupling -- 2.5 Dipolar coupling -- 2.6 Quadrupolar coupling -- 2.7 Magic-angle spinning -- 2.8 Relaxation --
505 8 _a3. Spin-1/2 nuclei: a practical guide -- 3.1 Introduction -- 3.2 The vector model & the rotating frame of reference -- 3.3 The components of an NMR experiment -- 3.4 Cross polarization -- 3.5 High-resolution spectra from 1H (& 19F) --
505 8 _a4. Quantum mechanics of solid-state NMR -- 4.1 Introduction -- 4.2 The Hamiltonians of NMR -- 4.3 The density matrix -- 4.4 Density operator treatments of simple NMR experiments -- 4.5 The density matrix for coupled spins -- 4.6 Euler angles & spherical tensors -- 4.7 Additional analytical tools --
505 8 _a5. Going further with spin-1/2 solid-state NMR -- 5.1 Introduction -- 5.2 Linewidths in solid-state NMR -- 5.3 Exploiting indirect (J) couplings in solids -- 5.4 Spectral correlation experiments -- 5.5 Homonuclear decoupling -- 5.6 Using correlation experiments for spectral assignment -- 5.7 Further applications --
505 8 _a6. Quadrupolar nuclei -- 6.1 Introduction -- 6.2 Characteristics of first-order quadrupolar spectra -- 6.3 First-order energy levels & spectra -- 6.4 Second-order zero-asymmetry cases -- 6.5 Spectra for cases with non-zero asymmetry: central transition -- 6.6 Recording one-dimensional spectra of quadrupolar nuclei -- 6.7 Manipulating the quadrupolar effect -- 6.8 Spectra for integral spins --
505 8 _a7. Relaxation, exchange & quantitation -- 7.1 Introduction -- 7.2 Relaxation -- 7.3 Exchange -- 7.4 Quantitative NMR -- 7.5 Paramagnetic systems --
505 8 _a8. Analysis & interpretation -- 8.1 Introduction -- 8.2 Quantitative measurement of anisotropies -- 8.3 Measurement of dipolar couplings -- 8.4 Quantifying indirect (J) couplings -- 8.5 Tensor interplay -- 8.6 Effects of quadrupolar nuclei on spin-1/2 spectra -- 8.7 Quantifying relationships between tensors -- 8.8 NMR crystallography --
505 8 _aAppendices -- A. The spin properties of spin-1/2 nuclides -- B. The spin properties of quadrupolar nuclides -- C. Liouville space, relaxation & exchange -- C.1 Introduction to Liouville space -- C.2 Application to relaxation -- C.3 Application to chemical exchange -- D. Introduction to solid-state NMR simulation -- D.1 Specifying the spin system -- D.2 Specifying the powder sampling -- D.3 Specifying the pulse sequence -- D.4 Efficiency of calculation -- Index.
506 _aRestricted to libraries which purchase an unrestricted PDF download via an IP.
520 3 _aNuclear magnetic resonance (NMR) has proved to be a uniquely powerful and versatile spectroscopy, and no modern university chemistry department or industrial chemistry laboratory is complete without a suite of NMR spectrometers. The phenomenon of nuclear spin may seem an odd basis for an analytical tool, but it is the relative isolation of the nuclear spin from its surroundings that makes it an ideal noninterfering probe of the electronic environment. Different sites are clearly identified by their chemical shifts, while J couplings in 1H spectra provide connectivity information. The combination of these two complementary interactions, plus the formidable array of different NMR experiments developed since the arrival of Fourier transform NMR in 1966, has revolutionized the practice of chemistry.
530 _aAlso available in print.
533 _aElectronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat reader.
588 _aTitle from PDF t.p. (viewed on September 13, 2012).
650 0 _aNuclear magnetic resonance spectroscopy.
653 _aSolid-state NMR
653 _aMagic-angle spinning
653 _aSolid-state structure
653 _aNMR crystallography
653 _aCross polarization
653 _aQuadrupolar nuclei
655 4 _aElectronic books.
700 1 _aHarris, Robin K.
_q(Robin Kingsley)
700 1 _aHodgkinson, Paul.
776 0 8 _iPrint version:
_z1606503502
_z9781606503508
856 4 0 _uhttps://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=954643
_zClick to View
942 _2lcc
_cEBK
999 _c270979
_d270979