IUKL Library
ul-Islam, Shahid.

The Impact and Prospects of Green Chemistry for Textile Technology. - 1 online resource (570 pages) - The Textile Institute Book Ser. . - The Textile Institute Book Ser. .

Front Cover -- The Impact and Prospects of Green Chemistry for Textile Technology -- Copyright -- Contents -- List of contributors -- Preface -- 1 Green chemistry in the wet processing of textiles -- 1.1 Textiles-A serious threat to sustainable environment -- 1.1.1 Chemistry of textile wet processing -- 1.1.2 Wet processing of textiles and issues of sustainability -- 1.2 Green chemistry and sustainability in textile sector -- 1.2.1 Sustainability -- 1.2.2 Recent sustainable chemical developments -- 1.2.3 Ionic liquids as green solvents in sustainable wet processing -- 1.2.4 Sustainable improvements of wet processing -- 1.2.5 Green chemistry in wet textile processing -- 1.2.6 Biomaterials in textile processing -- 1.2.7 Enzymes as biomaterials in textile processing -- 1.2.8 Biomaterials for dying applications -- 1.2.9 Biomaterial for finishing -- 1.2.10 Plasma technology as green approach in textile processing -- 1.2.11 Supercritical fluid technology as green approach in textile processing -- 1.2.12 Green fibers as replacement of synthetic fibers -- 1.3 Conclusion and future recommendations -- References -- 2 Sustainable colorants -- 2.1 Introduction -- 2.1.1 Natural dyes -- 2.1.1.1 Plant or herbal origin -- 2.1.1.2 Animal origin -- 2.1.1.3 Mineral origin -- 2.1.1.4 Microbial and fungal origin -- 2.1.2 Chemistry and classification -- 2.1.2.1 Based on chemical structure -- 2.1.2.2 Based on application methods -- 2.1.3 Extraction -- 2.1.4 Functional applications -- 2.1.4.1 Mordanting and dyeing -- 2.1.4.2 Mordanting methods -- 2.1.4.3 Dyeing -- 2.1.4.4 Advanced dyeing -- 2.1.5 Future trends -- References -- Sources of further information -- Further reading -- 3 Metal mordants and biomordants -- 3.1 Introduction -- 3.2 Classification of mordants -- 3.3 Conventional metal mordants and their environmental impacts. 3.4 Biomordants and novel approaches -- 3.5 Future trends -- References -- Further reading -- 4 Sustainable cyclodextrin in textile applications -- 4.1 Introduction -- 4.2 Cyclodextrins -- 4.2.1 Chemistry of cyclodextrins -- 4.2.2 Properties of cyclodextrins -- 4.2.3 Cyclodextrins solubility and its derivatives -- 4.3 Inclusion complexes and its classification -- 4.3.1 Classification of cyclodextrins inclusion complexes -- 4.4 Toxicological considerations -- 4.5 Applications of cyclodextrins -- 4.5.1 Pharmaceuticals -- 4.5.2 Food and flavors industry -- 4.5.3 Agriculture industry -- 4.5.4 Chemical industry -- 4.5.5 Cosmetics and toiletries -- 4.6 Textile and apparel industry -- 4.7 Binding mechanism of (Sb(B-CD on textiles -- 4.8 Applications of (Sb(B-cyclodextrin in textile processing -- 4.8.1 Textile auxiliary -- 4.8.2 Textile dyeing -- 4.8.3 Textile finishing -- 4.8.3.1 Fragrance and antimicrobial finish -- 4.8.3.2 Medical textiles -- 4.8.3.3 Cosmetotextile -- 4.8.3.4 UV-protective finish -- 4.8.4 Textile wastewater treatment -- 4.9 Chemical release properties of (Sb(B-CD -- 4.10 Sustainable impact of (Sb(B-cyclodextrin in textile industry -- 4.11 Textile modifications and developments -- 4.12 Future prospects -- 4.13 Conclusion -- References -- Further reading -- 5 Recent advances in application of chitosan and its derivatives in functional finishing of textiles -- 5.1 Introduction -- 5.1.1 Sources -- 5.1.2 Chemistry and deacetylation methods -- 5.1.3 Physicochemical characteristics of chitosan -- 5.1.3.1 Degree of deacetylation (DDA) -- 5.1.3.2 Molecular weight ( M W) -- 5.1.3.3 Solubility -- 5.1.3.4 Viscosity -- 5.1.4 Derivatives -- 5.1.4.1 Carboxylate derivatives -- 5.1.4.2 Sulfur-containing derivatives -- 5.1.4.3 Phosphorus derivatives -- 5.1.4.4 Nitrogen-containing chitosan derivatives. 5.2 Modification of textiles -- 5.2.1 Functional finishing -- 5.2.1.1 Antimicrobial finishing -- 5.2.1.2 Antiodor finishing -- 5.2.1.3 Blood coagulant effect -- 5.2.1.4 Blood anticoagulant effect -- 5.2.1.5 Antistatic finishing -- 5.2.1.6 Durable press/wrinkle resistance finishing -- 5.2.1.7 UV-protection finishing -- 5.3 Applications of chitin and chitosan in textile industry -- 5.3.1 Medical textiles -- 5.3.1.1 Antimicrobial fabrics -- 5.3.1.2 Wound dressing -- 5.3.1.3 Sutures -- 5.3.2 Dyeability improvement -- 5.3.3 Textile printing -- 5.3.4 Sportswear -- 5.4 Future trends -- 5.5 Conclusion -- References -- 6 Enzymes for green chemical processing of cotton -- 6.1 Introduction -- 6.2 Enzymes -- 6.2.1 Enzymes nomenclature and classifications -- 6.2.2 Enzymes as biocatalysts -- 6.2.2.1 Activity of enzymes vs parameters of reactions -- 6.2.2.2 Specificity of enzymes -- 6.3 Application of enzymes for green processing of cotton -- 6.3.1 Enzymatic desizing -- 6.3.2 Bioscouring -- 6.3.3 Biobleaching -- 6.3.4 Peroxide killer -- 6.3.5 Biowashing of denim fabric -- 6.3.6 Biopolishing -- 6.3.7 Enzymes for combined processing of cotton -- 6.3.8 Enzymes for functional finishing of cotton -- 6.4 Advanced techniques for enhancing efficiency of enzymatic processes -- 6.5 Conclusion -- References -- 7 The sonochemical functionalization of textiles -- 7.1 Introduction -- 7.2 Mechanism of the sonochemical deposition of nanoparticles on textiles -- 7.3 Ultrasound-assisted deposition of metal nano-oxides on textiles and their antibacterial properties -- 7.3.1 Synthesis and deposition of ZnO nanoparticles -- 7.3.2 Synthesis and deposition of CuO nanoparticles -- 7.3.3 Deposition of MgO and Al2O3 nanoparticles. 7.3.4 Sonochemical synthesis of a novel Zn-doped CuO nanocomposite, an inhibitor of multidrug-resistant (MDR) bacteri ... -- 7.3.5 The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its a ... -- 7.3.6 Sonochemical codeposition of antibacterial nanoparticles and dyes on textiles -- 7.4 Conclusion -- References -- 8 Nonthermal plasma: A promising green technology to improve environmental performance of textile industries -- 8.1 Introduction -- 8.2 Environmental impacts of wet-chemical processing of textile -- 8.3 Introduction to plasma technology -- 8.4 Application of plasma technology for eco-friendly processing of textiles -- 8.5 Nonthermal plasma treatment of cotton textiles -- 8.6 Nonthermal plasma treatment of polyester textiles -- 8.7 Conclusion and future directions -- References -- 9 Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy -- 9.1 Introduction -- 9.2 Mechanisms involved in textile flame retardancy -- 9.3 Structure and fire performances of selected flame retardant biomacromolecules -- 9.3.1 Whey proteins -- 9.3.2 Caseins -- 9.3.3 Hydrophobins -- 9.3.4 Deoxyribonucleic acids -- 9.4 Conclusions and future perspectives -- Acknowledgments -- References -- Further reading -- 10 Antimicrobial textiles -- 10.1 Introduction -- 10.2 Important definition-related antimicrobial textiles ( Pelczar et al., 1993) -- 10.2.1 Antimicrobial agent -- 10.2.2 Bactericidal agent -- 10.2.3 Bacteriostatic agent -- 10.2.4 Minimum inhibitory concentration -- 10.2.5 Minimum bactericidal concentration -- 10.3 Microorganisms and mode of action of antimicrobial agents -- 10.4 Antimicrobial agents used for textiles -- 10.4.1 Plant derived antimicrobial agents -- 10.4.1.1 Phenolic compounds -- 10.4.1.2 Quinones -- 10.4.1.3 Flavonoids. 10.4.1.4 Tannins -- 10.4.1.5 Essential oils and terpenoids -- 10.4.1.6 Curcuminoids -- 10.4.1.7 Polysaccharide -- 10.4.2 Animal-derived antimicrobial agents -- 10.4.2.1 Chitosan and its derivatives -- 10.5 Application of natural antimicrobial agents on textiles -- 10.5.1 Pad-dry-cure method -- 10.5.1.1 Application through cyclodextrin -- 10.5.1.2 Micro/nanoencapsulation -- 10.5.2 Exhaust dyeing method -- 10.6 Key issues related to plant-derived antimicrobial agents -- 10.6.1 Concentration of extract -- 10.6.2 Method of extraction process -- 10.6.3 Source of extract -- 10.6.4 Other performance properties of textiles -- 10.7 Conclusion -- References -- Further reading -- 11 Insect-repellent textiles using green and sustainable approaches -- 11.1 Introduction -- 11.2 Various types of bio-insect repellents based on scientific origin -- 11.2.1 Essential oils and their extracts -- 11.2.1.1 Lemon eucalyptus (Corymbia citriodora) (Myrtacace genus) -- 11.2.1.2 Citronella (Cymbopogon family) (Poaceae genus) -- 11.2.1.3 Neem (Meliaceae genus) -- 11.2.2 Natural oil -- 11.3 Mechanism of action of insect repellents against insects -- 11.4 Application of natural insect repellents on textile substrates -- 11.4.1 Various ways to impart insect-repellent/mosquito-repellent property to textile substrates -- 11.4.1.1 Application of microencapsulated repellents by pad-dry-cure technique -- Use of lemon grass oil for mosquito-repellent finish on polyester -- Use of citronella oil for mosquito-repellent finish on cotton -- Use of herbal extract of the Andrographis paniculata plant for mosquito-repellent finish on cotton -- 11.4.1.2 Direct application of natural repellents by pad-dry-cure method -- Use of mint leaves for mosquito-repellent finish on cotton -- Use of citronella and lavender oil on cotton. 11.5 Integration of active ingredients to the textile substrates.

9780081024928


Green chemistry..
Textile industry-Technological innovations..
Dyes and dyeing.


Electronic books.

TP155.2.E58 .I473 2019

677.00286
The Library's homepage is at http://library.iukl.edu.my/.