IUKL Library
Normal view MARC view ISBD view

The Impact and Prospects of Green Chemistry for Textile Technology.

By: ul-Islam, Shahid.
Contributor(s): Butola, Bhupendra Singh.
Material type: materialTypeLabelBookSeries: The Textile Institute Book Ser: Publisher: San Diego : Elsevier Science & Technology, 2018Copyright date: �2019Description: 1 online resource (570 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780081024928.Subject(s): Green chemistry | Textile industry-Technological innovations | Dyes and dyeingGenre/Form: Electronic books.DDC classification: 677.00286 Online resources: Click to View
Contents:
Front Cover -- The Impact and Prospects of Green Chemistry for Textile Technology -- Copyright -- Contents -- List of contributors -- Preface -- 1 Green chemistry in the wet processing of textiles -- 1.1 Textiles-A serious threat to sustainable environment -- 1.1.1 Chemistry of textile wet processing -- 1.1.2 Wet processing of textiles and issues of sustainability -- 1.2 Green chemistry and sustainability in textile sector -- 1.2.1 Sustainability -- 1.2.2 Recent sustainable chemical developments -- 1.2.3 Ionic liquids as green solvents in sustainable wet processing -- 1.2.4 Sustainable improvements of wet processing -- 1.2.5 Green chemistry in wet textile processing -- 1.2.6 Biomaterials in textile processing -- 1.2.7 Enzymes as biomaterials in textile processing -- 1.2.8 Biomaterials for dying applications -- 1.2.9 Biomaterial for finishing -- 1.2.10 Plasma technology as green approach in textile processing -- 1.2.11 Supercritical fluid technology as green approach in textile processing -- 1.2.12 Green fibers as replacement of synthetic fibers -- 1.3 Conclusion and future recommendations -- References -- 2 Sustainable colorants -- 2.1 Introduction -- 2.1.1 Natural dyes -- 2.1.1.1 Plant or herbal origin -- 2.1.1.2 Animal origin -- 2.1.1.3 Mineral origin -- 2.1.1.4 Microbial and fungal origin -- 2.1.2 Chemistry and classification -- 2.1.2.1 Based on chemical structure -- 2.1.2.2 Based on application methods -- 2.1.3 Extraction -- 2.1.4 Functional applications -- 2.1.4.1 Mordanting and dyeing -- 2.1.4.2 Mordanting methods -- 2.1.4.3 Dyeing -- 2.1.4.4 Advanced dyeing -- 2.1.5 Future trends -- References -- Sources of further information -- Further reading -- 3 Metal mordants and biomordants -- 3.1 Introduction -- 3.2 Classification of mordants -- 3.3 Conventional metal mordants and their environmental impacts.
3.4 Biomordants and novel approaches -- 3.5 Future trends -- References -- Further reading -- 4 Sustainable cyclodextrin in textile applications -- 4.1 Introduction -- 4.2 Cyclodextrins -- 4.2.1 Chemistry of cyclodextrins -- 4.2.2 Properties of cyclodextrins -- 4.2.3 Cyclodextrins solubility and its derivatives -- 4.3 Inclusion complexes and its classification -- 4.3.1 Classification of cyclodextrins inclusion complexes -- 4.4 Toxicological considerations -- 4.5 Applications of cyclodextrins -- 4.5.1 Pharmaceuticals -- 4.5.2 Food and flavors industry -- 4.5.3 Agriculture industry -- 4.5.4 Chemical industry -- 4.5.5 Cosmetics and toiletries -- 4.6 Textile and apparel industry -- 4.7 Binding mechanism of (Sb(B-CD on textiles -- 4.8 Applications of (Sb(B-cyclodextrin in textile processing -- 4.8.1 Textile auxiliary -- 4.8.2 Textile dyeing -- 4.8.3 Textile finishing -- 4.8.3.1 Fragrance and antimicrobial finish -- 4.8.3.2 Medical textiles -- 4.8.3.3 Cosmetotextile -- 4.8.3.4 UV-protective finish -- 4.8.4 Textile wastewater treatment -- 4.9 Chemical release properties of (Sb(B-CD -- 4.10 Sustainable impact of (Sb(B-cyclodextrin in textile industry -- 4.11 Textile modifications and developments -- 4.12 Future prospects -- 4.13 Conclusion -- References -- Further reading -- 5 Recent advances in application of chitosan and its derivatives in functional finishing of textiles -- 5.1 Introduction -- 5.1.1 Sources -- 5.1.2 Chemistry and deacetylation methods -- 5.1.3 Physicochemical characteristics of chitosan -- 5.1.3.1 Degree of deacetylation (DDA) -- 5.1.3.2 Molecular weight ( M W) -- 5.1.3.3 Solubility -- 5.1.3.4 Viscosity -- 5.1.4 Derivatives -- 5.1.4.1 Carboxylate derivatives -- 5.1.4.2 Sulfur-containing derivatives -- 5.1.4.3 Phosphorus derivatives -- 5.1.4.4 Nitrogen-containing chitosan derivatives.
5.2 Modification of textiles -- 5.2.1 Functional finishing -- 5.2.1.1 Antimicrobial finishing -- 5.2.1.2 Antiodor finishing -- 5.2.1.3 Blood coagulant effect -- 5.2.1.4 Blood anticoagulant effect -- 5.2.1.5 Antistatic finishing -- 5.2.1.6 Durable press/wrinkle resistance finishing -- 5.2.1.7 UV-protection finishing -- 5.3 Applications of chitin and chitosan in textile industry -- 5.3.1 Medical textiles -- 5.3.1.1 Antimicrobial fabrics -- 5.3.1.2 Wound dressing -- 5.3.1.3 Sutures -- 5.3.2 Dyeability improvement -- 5.3.3 Textile printing -- 5.3.4 Sportswear -- 5.4 Future trends -- 5.5 Conclusion -- References -- 6 Enzymes for green chemical processing of cotton -- 6.1 Introduction -- 6.2 Enzymes -- 6.2.1 Enzymes nomenclature and classifications -- 6.2.2 Enzymes as biocatalysts -- 6.2.2.1 Activity of enzymes vs parameters of reactions -- 6.2.2.2 Specificity of enzymes -- 6.3 Application of enzymes for green processing of cotton -- 6.3.1 Enzymatic desizing -- 6.3.2 Bioscouring -- 6.3.3 Biobleaching -- 6.3.4 Peroxide killer -- 6.3.5 Biowashing of denim fabric -- 6.3.6 Biopolishing -- 6.3.7 Enzymes for combined processing of cotton -- 6.3.8 Enzymes for functional finishing of cotton -- 6.4 Advanced techniques for enhancing efficiency of enzymatic processes -- 6.5 Conclusion -- References -- 7 The sonochemical functionalization of textiles -- 7.1 Introduction -- 7.2 Mechanism of the sonochemical deposition of nanoparticles on textiles -- 7.3 Ultrasound-assisted deposition of metal nano-oxides on textiles and their antibacterial properties -- 7.3.1 Synthesis and deposition of ZnO nanoparticles -- 7.3.2 Synthesis and deposition of CuO nanoparticles -- 7.3.3 Deposition of MgO and Al2O3 nanoparticles.
7.3.4 Sonochemical synthesis of a novel Zn-doped CuO nanocomposite, an inhibitor of multidrug-resistant (MDR) bacteri ... -- 7.3.5 The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its a ... -- 7.3.6 Sonochemical codeposition of antibacterial nanoparticles and dyes on textiles -- 7.4 Conclusion -- References -- 8 Nonthermal plasma: A promising green technology to improve environmental performance of textile industries -- 8.1 Introduction -- 8.2 Environmental impacts of wet-chemical processing of textile -- 8.3 Introduction to plasma technology -- 8.4 Application of plasma technology for eco-friendly processing of textiles -- 8.5 Nonthermal plasma treatment of cotton textiles -- 8.6 Nonthermal plasma treatment of polyester textiles -- 8.7 Conclusion and future directions -- References -- 9 Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy -- 9.1 Introduction -- 9.2 Mechanisms involved in textile flame retardancy -- 9.3 Structure and fire performances of selected flame retardant biomacromolecules -- 9.3.1 Whey proteins -- 9.3.2 Caseins -- 9.3.3 Hydrophobins -- 9.3.4 Deoxyribonucleic acids -- 9.4 Conclusions and future perspectives -- Acknowledgments -- References -- Further reading -- 10 Antimicrobial textiles -- 10.1 Introduction -- 10.2 Important definition-related antimicrobial textiles ( Pelczar et al., 1993) -- 10.2.1 Antimicrobial agent -- 10.2.2 Bactericidal agent -- 10.2.3 Bacteriostatic agent -- 10.2.4 Minimum inhibitory concentration -- 10.2.5 Minimum bactericidal concentration -- 10.3 Microorganisms and mode of action of antimicrobial agents -- 10.4 Antimicrobial agents used for textiles -- 10.4.1 Plant derived antimicrobial agents -- 10.4.1.1 Phenolic compounds -- 10.4.1.2 Quinones -- 10.4.1.3 Flavonoids.
10.4.1.4 Tannins -- 10.4.1.5 Essential oils and terpenoids -- 10.4.1.6 Curcuminoids -- 10.4.1.7 Polysaccharide -- 10.4.2 Animal-derived antimicrobial agents -- 10.4.2.1 Chitosan and its derivatives -- 10.5 Application of natural antimicrobial agents on textiles -- 10.5.1 Pad-dry-cure method -- 10.5.1.1 Application through cyclodextrin -- 10.5.1.2 Micro/nanoencapsulation -- 10.5.2 Exhaust dyeing method -- 10.6 Key issues related to plant-derived antimicrobial agents -- 10.6.1 Concentration of extract -- 10.6.2 Method of extraction process -- 10.6.3 Source of extract -- 10.6.4 Other performance properties of textiles -- 10.7 Conclusion -- References -- Further reading -- 11 Insect-repellent textiles using green and sustainable approaches -- 11.1 Introduction -- 11.2 Various types of bio-insect repellents based on scientific origin -- 11.2.1 Essential oils and their extracts -- 11.2.1.1 Lemon eucalyptus (Corymbia citriodora) (Myrtacace genus) -- 11.2.1.2 Citronella (Cymbopogon family) (Poaceae genus) -- 11.2.1.3 Neem (Meliaceae genus) -- 11.2.2 Natural oil -- 11.3 Mechanism of action of insect repellents against insects -- 11.4 Application of natural insect repellents on textile substrates -- 11.4.1 Various ways to impart insect-repellent/mosquito-repellent property to textile substrates -- 11.4.1.1 Application of microencapsulated repellents by pad-dry-cure technique -- Use of lemon grass oil for mosquito-repellent finish on polyester -- Use of citronella oil for mosquito-repellent finish on cotton -- Use of herbal extract of the Andrographis paniculata plant for mosquito-repellent finish on cotton -- 11.4.1.2 Direct application of natural repellents by pad-dry-cure method -- Use of mint leaves for mosquito-repellent finish on cotton -- Use of citronella and lavender oil on cotton.
11.5 Integration of active ingredients to the textile substrates.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number URL Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=5574157 1 Available
Total holds: 0

Front Cover -- The Impact and Prospects of Green Chemistry for Textile Technology -- Copyright -- Contents -- List of contributors -- Preface -- 1 Green chemistry in the wet processing of textiles -- 1.1 Textiles-A serious threat to sustainable environment -- 1.1.1 Chemistry of textile wet processing -- 1.1.2 Wet processing of textiles and issues of sustainability -- 1.2 Green chemistry and sustainability in textile sector -- 1.2.1 Sustainability -- 1.2.2 Recent sustainable chemical developments -- 1.2.3 Ionic liquids as green solvents in sustainable wet processing -- 1.2.4 Sustainable improvements of wet processing -- 1.2.5 Green chemistry in wet textile processing -- 1.2.6 Biomaterials in textile processing -- 1.2.7 Enzymes as biomaterials in textile processing -- 1.2.8 Biomaterials for dying applications -- 1.2.9 Biomaterial for finishing -- 1.2.10 Plasma technology as green approach in textile processing -- 1.2.11 Supercritical fluid technology as green approach in textile processing -- 1.2.12 Green fibers as replacement of synthetic fibers -- 1.3 Conclusion and future recommendations -- References -- 2 Sustainable colorants -- 2.1 Introduction -- 2.1.1 Natural dyes -- 2.1.1.1 Plant or herbal origin -- 2.1.1.2 Animal origin -- 2.1.1.3 Mineral origin -- 2.1.1.4 Microbial and fungal origin -- 2.1.2 Chemistry and classification -- 2.1.2.1 Based on chemical structure -- 2.1.2.2 Based on application methods -- 2.1.3 Extraction -- 2.1.4 Functional applications -- 2.1.4.1 Mordanting and dyeing -- 2.1.4.2 Mordanting methods -- 2.1.4.3 Dyeing -- 2.1.4.4 Advanced dyeing -- 2.1.5 Future trends -- References -- Sources of further information -- Further reading -- 3 Metal mordants and biomordants -- 3.1 Introduction -- 3.2 Classification of mordants -- 3.3 Conventional metal mordants and their environmental impacts.

3.4 Biomordants and novel approaches -- 3.5 Future trends -- References -- Further reading -- 4 Sustainable cyclodextrin in textile applications -- 4.1 Introduction -- 4.2 Cyclodextrins -- 4.2.1 Chemistry of cyclodextrins -- 4.2.2 Properties of cyclodextrins -- 4.2.3 Cyclodextrins solubility and its derivatives -- 4.3 Inclusion complexes and its classification -- 4.3.1 Classification of cyclodextrins inclusion complexes -- 4.4 Toxicological considerations -- 4.5 Applications of cyclodextrins -- 4.5.1 Pharmaceuticals -- 4.5.2 Food and flavors industry -- 4.5.3 Agriculture industry -- 4.5.4 Chemical industry -- 4.5.5 Cosmetics and toiletries -- 4.6 Textile and apparel industry -- 4.7 Binding mechanism of (Sb(B-CD on textiles -- 4.8 Applications of (Sb(B-cyclodextrin in textile processing -- 4.8.1 Textile auxiliary -- 4.8.2 Textile dyeing -- 4.8.3 Textile finishing -- 4.8.3.1 Fragrance and antimicrobial finish -- 4.8.3.2 Medical textiles -- 4.8.3.3 Cosmetotextile -- 4.8.3.4 UV-protective finish -- 4.8.4 Textile wastewater treatment -- 4.9 Chemical release properties of (Sb(B-CD -- 4.10 Sustainable impact of (Sb(B-cyclodextrin in textile industry -- 4.11 Textile modifications and developments -- 4.12 Future prospects -- 4.13 Conclusion -- References -- Further reading -- 5 Recent advances in application of chitosan and its derivatives in functional finishing of textiles -- 5.1 Introduction -- 5.1.1 Sources -- 5.1.2 Chemistry and deacetylation methods -- 5.1.3 Physicochemical characteristics of chitosan -- 5.1.3.1 Degree of deacetylation (DDA) -- 5.1.3.2 Molecular weight ( M W) -- 5.1.3.3 Solubility -- 5.1.3.4 Viscosity -- 5.1.4 Derivatives -- 5.1.4.1 Carboxylate derivatives -- 5.1.4.2 Sulfur-containing derivatives -- 5.1.4.3 Phosphorus derivatives -- 5.1.4.4 Nitrogen-containing chitosan derivatives.

5.2 Modification of textiles -- 5.2.1 Functional finishing -- 5.2.1.1 Antimicrobial finishing -- 5.2.1.2 Antiodor finishing -- 5.2.1.3 Blood coagulant effect -- 5.2.1.4 Blood anticoagulant effect -- 5.2.1.5 Antistatic finishing -- 5.2.1.6 Durable press/wrinkle resistance finishing -- 5.2.1.7 UV-protection finishing -- 5.3 Applications of chitin and chitosan in textile industry -- 5.3.1 Medical textiles -- 5.3.1.1 Antimicrobial fabrics -- 5.3.1.2 Wound dressing -- 5.3.1.3 Sutures -- 5.3.2 Dyeability improvement -- 5.3.3 Textile printing -- 5.3.4 Sportswear -- 5.4 Future trends -- 5.5 Conclusion -- References -- 6 Enzymes for green chemical processing of cotton -- 6.1 Introduction -- 6.2 Enzymes -- 6.2.1 Enzymes nomenclature and classifications -- 6.2.2 Enzymes as biocatalysts -- 6.2.2.1 Activity of enzymes vs parameters of reactions -- 6.2.2.2 Specificity of enzymes -- 6.3 Application of enzymes for green processing of cotton -- 6.3.1 Enzymatic desizing -- 6.3.2 Bioscouring -- 6.3.3 Biobleaching -- 6.3.4 Peroxide killer -- 6.3.5 Biowashing of denim fabric -- 6.3.6 Biopolishing -- 6.3.7 Enzymes for combined processing of cotton -- 6.3.8 Enzymes for functional finishing of cotton -- 6.4 Advanced techniques for enhancing efficiency of enzymatic processes -- 6.5 Conclusion -- References -- 7 The sonochemical functionalization of textiles -- 7.1 Introduction -- 7.2 Mechanism of the sonochemical deposition of nanoparticles on textiles -- 7.3 Ultrasound-assisted deposition of metal nano-oxides on textiles and their antibacterial properties -- 7.3.1 Synthesis and deposition of ZnO nanoparticles -- 7.3.2 Synthesis and deposition of CuO nanoparticles -- 7.3.3 Deposition of MgO and Al2O3 nanoparticles.

7.3.4 Sonochemical synthesis of a novel Zn-doped CuO nanocomposite, an inhibitor of multidrug-resistant (MDR) bacteri ... -- 7.3.5 The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its a ... -- 7.3.6 Sonochemical codeposition of antibacterial nanoparticles and dyes on textiles -- 7.4 Conclusion -- References -- 8 Nonthermal plasma: A promising green technology to improve environmental performance of textile industries -- 8.1 Introduction -- 8.2 Environmental impacts of wet-chemical processing of textile -- 8.3 Introduction to plasma technology -- 8.4 Application of plasma technology for eco-friendly processing of textiles -- 8.5 Nonthermal plasma treatment of cotton textiles -- 8.6 Nonthermal plasma treatment of polyester textiles -- 8.7 Conclusion and future directions -- References -- 9 Textile finishing with biomacromolecules: A low environmental impact approach in flame retardancy -- 9.1 Introduction -- 9.2 Mechanisms involved in textile flame retardancy -- 9.3 Structure and fire performances of selected flame retardant biomacromolecules -- 9.3.1 Whey proteins -- 9.3.2 Caseins -- 9.3.3 Hydrophobins -- 9.3.4 Deoxyribonucleic acids -- 9.4 Conclusions and future perspectives -- Acknowledgments -- References -- Further reading -- 10 Antimicrobial textiles -- 10.1 Introduction -- 10.2 Important definition-related antimicrobial textiles ( Pelczar et al., 1993) -- 10.2.1 Antimicrobial agent -- 10.2.2 Bactericidal agent -- 10.2.3 Bacteriostatic agent -- 10.2.4 Minimum inhibitory concentration -- 10.2.5 Minimum bactericidal concentration -- 10.3 Microorganisms and mode of action of antimicrobial agents -- 10.4 Antimicrobial agents used for textiles -- 10.4.1 Plant derived antimicrobial agents -- 10.4.1.1 Phenolic compounds -- 10.4.1.2 Quinones -- 10.4.1.3 Flavonoids.

10.4.1.4 Tannins -- 10.4.1.5 Essential oils and terpenoids -- 10.4.1.6 Curcuminoids -- 10.4.1.7 Polysaccharide -- 10.4.2 Animal-derived antimicrobial agents -- 10.4.2.1 Chitosan and its derivatives -- 10.5 Application of natural antimicrobial agents on textiles -- 10.5.1 Pad-dry-cure method -- 10.5.1.1 Application through cyclodextrin -- 10.5.1.2 Micro/nanoencapsulation -- 10.5.2 Exhaust dyeing method -- 10.6 Key issues related to plant-derived antimicrobial agents -- 10.6.1 Concentration of extract -- 10.6.2 Method of extraction process -- 10.6.3 Source of extract -- 10.6.4 Other performance properties of textiles -- 10.7 Conclusion -- References -- Further reading -- 11 Insect-repellent textiles using green and sustainable approaches -- 11.1 Introduction -- 11.2 Various types of bio-insect repellents based on scientific origin -- 11.2.1 Essential oils and their extracts -- 11.2.1.1 Lemon eucalyptus (Corymbia citriodora) (Myrtacace genus) -- 11.2.1.2 Citronella (Cymbopogon family) (Poaceae genus) -- 11.2.1.3 Neem (Meliaceae genus) -- 11.2.2 Natural oil -- 11.3 Mechanism of action of insect repellents against insects -- 11.4 Application of natural insect repellents on textile substrates -- 11.4.1 Various ways to impart insect-repellent/mosquito-repellent property to textile substrates -- 11.4.1.1 Application of microencapsulated repellents by pad-dry-cure technique -- Use of lemon grass oil for mosquito-repellent finish on polyester -- Use of citronella oil for mosquito-repellent finish on cotton -- Use of herbal extract of the Andrographis paniculata plant for mosquito-repellent finish on cotton -- 11.4.1.2 Direct application of natural repellents by pad-dry-cure method -- Use of mint leaves for mosquito-repellent finish on cotton -- Use of citronella and lavender oil on cotton.

11.5 Integration of active ingredients to the textile substrates.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.