IUKL Library

Machine Learning and Its Application to Reacting Flows : (Record no. 328491)

000 -LEADER
fixed length control field 08521nam a22004693i 4500
001 - CONTROL NUMBER
control field EBC7167859
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240322153019.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 231028s2023 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783031162480
Qualifying information (electronic bk.)
Cancelled/invalid ISBN 9783031162473
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC7167859
System control number (Au-PeEL)EBL7167859
System control number (OCoLC)1358406676
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK1041-1078
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Swaminathan, Nedunchezhian.
245 10 - TITLE STATEMENT
Title Machine Learning and Its Application to Reacting Flows :
Remainder of title ML and Combustion.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 -
-- Cham :
-- Springer International Publishing AG,
-- 2023.
-- �2023.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (353 pages)
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
490 1# - SERIES STATEMENT
Series statement Lecture Notes in Energy Series ;
Volume number/sequential designation v.44
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.
Formatted contents note 2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.
Formatted contents note 3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.
Formatted contents note 5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.
588 ## -
-- Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Parente, Alessandro.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Swaminathan, Nedunchezhian
Title Machine Learning and Its Application to Reacting Flows
Place, publisher, and date of publication Cham : Springer International Publishing AG,c2023
International Standard Book Number 9783031162473
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Lecture Notes in Energy Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ebookcentral.proquest.com/lib/kliuc-ebooks/detail.action?docID=7167859
Public note Click to View
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type E-book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Permanent Location Current Location Date acquired Source of acquisition Date last seen Copy number Price effective from Koha item type
            IUKL Library IUKL Library 2024-03-22 Access Dunia 2024-03-22 1 2024-03-22 E-book
The Library's homepage is at http://library.iukl.edu.my/.