IUKL Library
Normal view MARC view ISBD view

Machine Learning and Its Application to Reacting Flows : ML and Combustion.

By: Swaminathan, Nedunchezhian.
Contributor(s): Parente, Alessandro.
Material type: materialTypeLabelBookSeries: Lecture Notes in Energy Series: Publisher: Cham : Springer International Publishing AG, 2023Copyright date: �2023Edition: 1st ed.Description: 1 online resource (353 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9783031162480.Genre/Form: Electronic books.Online resources: Click to View
Contents:
Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.
2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.
3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.
5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Copy number Status Date due Item holds
E-book E-book IUKL Library
Subscripti 1 Available
Total holds: 0

Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.

2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.

3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.

5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments for this item.

Log in to your account to post a comment.
The Library's homepage is at http://library.iukl.edu.my/.